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Physical processes can generate spatiotemporal heterogeneity in habitat quality for fish and also influence the
overlap of pre-recruit individuals (e.g., larvae) with high-quality habitat through hydrodynamic advection. In
turn, individuals from different stocks that are produced in different spawning locations or at different times
may experience dissimilar habitat conditions, which can underlie within- and among-stock variability in larval
growth and survival. While such physically-mediated variation has been shown to be important in driving
intra- and inter-annual patterns in recruitment in marine ecosystems, its role in governing larval advection,
growth, survival, and recruitment has received less attention in large lake ecosystems such as the Laurentian
Great Lakes. Herein, we used a hydrodynamic model linked to a larval walleye (Sander vitreus) individual-
based model to explore how the timing and location of larval walleye emergence from several spawning sites
in western Lake Erie (Maumee, Sandusky, and Detroit rivers; Ohio reef complex) can influence advection path-
ways andmixing among these local spawning populations (stocks), and how spatiotemporal variation in thermal
habitat can influence stock-specific larval growth.While basin-wide advection patternswere fairly similar during
2011 and 2012, smaller scale advection patterns and the degree of stockmixing varied both within and between
years. Additionally, differences in larval growth were evident among stocks and among cohorts within stocks
which were attributed to spatiotemporal differences in water temperature. Using these findings, we discuss
the value of linked physical–biological models for understanding the recruitment process and addressing fisher-
ies management problems in the world's Great Lakes.

© 2015 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Physical processes can strongly influence the growth, development,
and recruitment of larval fish through a variety of direct and indirect
pathways (Houde, 1987, 1989, 2008, 2009; Ludsin et al., 2014).Multiple
physical processes, including heating and cooling, precipitation-driven
river discharge, and wind-driven water circulation and upwelling, can
generate spatial and temporal heterogeneity in habitat quality through
effects on the thermal environment, planktonic prey availability, and
predation risk (Houde, 1989; Grimes and Kingsford, 1996; Myers,
es Research. Published by Elsevier B

tock-specific advection of larv
Great Lakes Res. (2015), http:
1997; Steinhart et al., 2005; Allain et al., 2007; Reichert et al., 2010).
Concurrently, the initial dispersal of pelagic larvae of many species has
been shown to be strongly influenced by hydrodynamic advection
(James et al., 2002; Hilborn et al., 2003; Hook et al., 2006; Beletsky
et al., 2007; Pineda et al., 2007; Cowen and Sponaugle, 2009; North
et al., 2009; Zhao et al., 2009). Thus, whether and for how long larvae re-
spectively encounter and occupy high-quality habitat depend on the in-
terplay of multiple physical processes (Roseman et al., 2005; Beletsky
et al., 2007; Zhao et al., 2009; Doyle and Mier, 2012). Because even
small differences in larval growth and survival rates can propagate
into large differences in year-class strength (Houde, 1987, 1989), ability
to identify recurringpatterns in physical processes andhow they impact
larval growth and survival by affecting the overlap between larvae and
.V. All rights reserved.
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high-quality habitat should improve our understanding of intra- and
inter-annual recruitment variations (Cushing, 1990; Durant et al.,
2007).

Individual-based, coupled physical–biological models (ICPBMs)
offer a useful approach to studying the biophysical drivers of larval
fish recruitment (Miller, 2007; Werner et al., 2007; North et al., 2009;
Hinrichsen et al., 2011). Such ICPBMs typically consist of a hydrodynam-
ic model that simulates the physical conditions of the aquatic environ-
ment (e.g., water circulation, temperature). These conditions, in turn,
serve as inputs into a lower food web model and (or) an individual-
based model (IBM) of fish larvae. The lower food web model can take
many forms, from a simple statistical model to a complex mechanistic
model (North et al., 2009) that describe physicochemical conditions of
the environment (e.g., nutrient concentrations, water clarity), as well
as the distribution and abundance of planktonic and benthic organisms,
some ofwhich act as prey for the larvalfish. The larvalfish IBMoften de-
scribes larval foraging, development, growth, and survival, the rates of
which are influenced by state- (or stage-) dependent processes such
as starvation and predation (Miller, 2007). Because individual larvae
are unlikely to experience precisely the same environment, studying
larvae as populations of discrete individuals, rather than as a mean,
can be more informative (i.e., variation within a population and differ-
ences among traits of survivors relative to the rest of the individuals
can be important and informative; DeAngelis and Gross, 1992; Grimm
and Railsback, 2005; Miller, 2007).

Given that many processes simultaneously operate to influence
habitat conditions important to larvae, one should expect to find
that many of these processes have only small and (or) conflicting
effects on recruitment, which may lead to emergent or interactive ef-
fects. By using empirically-based model parameters (e.g., field- or
laboratory-collected environmental data) or hypothetical conditions
(e.g., estimates of future habitat conditions) to simulate the integrative
effects of these multiple biophysical drivers, ICPBMs can be used to
identify their collective role in driving recruitment variation or in a
hypothesis-testing framework to assess the importance of individual
drivers of the recruitment process (Miller, 2007). Through such model-
ing, one can address questions such as: How consistent are patterns in
larval dispersal/advection from particular spawning locations across
the production season and across years?Which stocks aremixing as lar-
vae, when are they mixing within a season, and how consistent are
mixing patterns both within and across years? Do repeated spatiotem-
poral patterns in relevant physical processes exist? Do particular areas
have consistently lower or higher habitat quality for larvae, and at
what temporal or spatial scale do these patterns occur? Answering
these questions is likely to be informative to several issues in fisheries
ecology, including understanding recruitment variation and identifying
stock structure.

Inmarine ecosystems, ICPBMs have successfully been used for sever-
al decades to help understand the role of biophysical processes in larval
fish transport, growth, development, mortality, and recruitment
(Werner et al., 2007; Miller, 2007; Cowen and Sponaugle, 2009). How-
ever, while many economically and ecologically important species in
large freshwater lakes have similar life-history characteristics (e.g., a
long, pelagic larval stage, Ludsin et al., 2014; Pritt et al., 2014) and are
likely influenced by similar biophysical processes (e.g., large- and
small-scale currents, seasonal warming, upwelling, river discharge
rates; see review by Ludsin et al., 2014), ICPBMs have been used much
less frequently. From their use of an ICPBM in Lake Michigan, Beletsky
et al. (2007) found that large-scale circulation patterns may advect yel-
low perch (Perca flavescens) larvae away from their southwestern
spawning and nursery areas to potential settlement areas throughout
Lake Michigan. Zhao et al. (2009) and Smith and Zhao (2011) used an
ICPBM to simulate walleye (Sander vitreus) transport in western
Lake Erie, finding that pelagic larvae could be advected by lake currents
into and out of regions of high food (zooplankton) availability, which in
turn may have influenced walleye recruitment variation. Sesterhenn
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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et al. (2014) similarly used an ICPBM to study transport and growth of
walleye larvae in Saginaw Bay. Although a larger number of models of
lake and plankton dynamics have been developed (e.g., Leon et al.,
2005; Bruce et al., 2006; Leon et al., 2011; Michalak et al., 2013), the
above examples are the only ones of which we are aware that have
used an ICPBM to address fish recruitment in a large lake ecosystem.

Using walleye produced in Lake Erie's western basin as our focal
population, we illustrate how ICPBMs can be used to address recruit-
ment questions in large lake ecosystems such as the Laurentian Great
Lakes. Specifically, we explore how larval advection can interact with
heterogeneity in habitat quality to influence variation in growth rate
among larvae produced at four major spawning locations within the
western basin: Maumee, Sandusky, and Detroit rivers and the Ohio
reef complex (Fig. 1). Toward this end, we use a physical model to
investigate the consistency of advection patterns within and between
years (2011–2012), including how much mixing occurs among local
spawning populations (i.e., stocks). Afterwards, we use output from
the physical model as input into a larval walleye IBM to quantify how
larval advection and spatiotemporal heterogeneity in thermal habitat
interact to drive growth rate variation during the first month of larval
life within and among cohorts produced by these four western basin
stocks. A focus on growth during the larval stage is justified as walleye
recruitment to the fishery at age-2 is set during the larval or early juve-
nile stage (Ludsin, 2000;Walleye Task Group, 2013)with research from
both marine and freshwater ecosystems demonstrating that rapid de-
velopmental and larval growth rates can benefit recruitment by reduc-
ing the risk of mortality to both abiotic (e.g., storms) and biotic
(e.g., predation, starvation) factors (Houde, 1987, 1989, 2008, 2009;
Miller et al., 1988; Bailey and Houde, 1989; Rice et al., 1993; Ludsin
and Devries, 1997). We hypothesized that the degree of mixing
among stocks during the larval stage would vary considerably within
and between years because wind is a major driver of water circulation
patterns in the Lake Erie (Beletsky et al., 2013; Ludsin et al., 2014),
and that this variable mixing would lead to intra- and inter-annual var-
iations in stock-specific larval growth trajectories.

Methods

Study system and species

Lake Erie (USA–Canada) is a part of the Laurentian Great Lakes eco-
system, and is warmer, shallower (mean depth of the western basin =
7.4 m, mean depth of entire lake = 19m), and is more productive than
the other Great Lakes (Fuller et al., 1995). Large-scale water circulation
patterns in western Lake Erie are driven by both wind forcing and in-
flows from the Detroit and Maumee Rivers (Beletsky et al., 2013). In
turn, water circulation and inputs of sediments, nutrients, and water
from these rivers can drive spatiotemporal variability in habitat features
important to larval walleye residing in the western basin during the
spring, including temperature, zooplankton prey availability, and
water transparency (Frost and Culver, 2001; Jones et al., 2003;
Roseman et al., 2005). Most prominently, the inputs of warm water,
sediments, and nutrients from the Maumee River, which drains into
the western basin along its southern shore (Fig. 1), can be a particularly
important driver of habitat quality during the spring through formation
of a warm, productive, and turbid river plume (Reichert et al., 2010;
Ludsin et al., 2010) that has been hypothesized to benefit recruitment
of larval walleye to the juvenile stage (Roseman et al., 2005; Ludsin
et al., 2010).

Lake Erie's walleye population is both ecologically and economically
important. In addition to being Lake Erie's most abundant native top
predator, walleye support Lake Erie's largest recreational fishery and
second largest commercial fishery (Hatch et al., 1987; Walleye Task
Group, 2013). Lake Erie's walleye population historically has exhibited
wide fluctuations in size, which has been largely driven by inter-
annual variability in recruitment of individuals through the egg and
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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Fig. 1.Map of Lake Erie with an inset of western Lake Erie. Bathymetric contour lines are at 5m intervals. Relevant walleye spawning sites (release sites inmodel) aremarked on the inset
(Detroit River, DR; Maumee River, MR; Ohio reef complex, OR; and Sandusky River and Bay, SR) with filled circles.

Table 1
Monthly means for several meteorological and physical variables during 2011 and
2012 measured at Toledo Express Airport, OH (meteorology) and Waterville, OH
(discharge). Meteorological data were provided by from National Climatic Data Center
(ncdc.noaa.gov), whereas Maumee River discharge data came from the United States
Geological Survey (waterdata.usgs.gov).

Air
temperature
(°C)

Wind
direction
(° past N)

Wind
speed
(m/s)

Cloud
cover
(%)

Maumee River
discharge
(m3/s)

2011
March 2.3 0 3.9 37 599
April 8.9 250 5.0 49 467
May 16.2 40 3.3 63 685
June 21.6 260 3.3 74 144

2012
March 10.5 230 4.1 51 270
April 9.7 320 3.9 50 42
May 18.3 0 3.0 66 53
June 21.7 260 3.2 73 15
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larval stage (Busch et al., 1975; Mion et al., 1998; Roseman et al., 2005).
Since 2003, however, recruitment has predominantly been below aver-
age for reasons that remain unknown, thus leading to a reduction in
lakewide population size (Walleye Task Group, 2013).

The western basin supports Lake Erie's largest spawning popula-
tions, with larval production emanating from both riverine (Maumee,
Sandusky, and Detroit) and open-lake reef populations (e.g., Ohio reef
complex; Fig. 1). All western basin stocks spawn during early spring
(Goodyear et al., 1982) although the timing and duration of spawning
typically vary among both stocks and years (Mion et al., 1998;
Roseman et al., 2005). Walleye hatch at 6–8 mm in total length (TL,
Roseman 1997), have weak swimming abilities until ~21 mm TL
(Humphrey et al., 2012), and spend ~20–30 d as pelagic larvae that
feed on zooplankton before becoming demersal as juveniles at
~30 mm TL (McElman and Balon, 1979; Gopalan et al., 1998).

Many gaps exist in our understanding of the larval walleye recruit-
ment environment, as well as the degree to which stocks mix. Previous
field andmodeling studies have suggested that the southern, nearshore
area of the western basin, which typically receives outflows from the
Maumee River, tends to act as high-quality nursery habitat for walleye
larvae (Jones et al., 2003; Roseman et al., 2005) and that offshore advec-
tion of larvae away from this area has negative consequences for year-
class strength (Zhao et al., 2009). However, because no previous study
has quantified larval walleye habitat and growth in offshore regions of
western Lake Erie (e.g., in non-US waters), their potential as nursery
habitat remains highly speculative. Similarly, while previous investiga-
tions have suggested that walleye stocks in western Lake Erie are
mixed at both the juvenile (Hedges, 2002; Bartnik, 2005) and adult
(Bigrigg, 2006) life stages and exhibit a complicated population struc-
ture (e.g., Merker and Woodruff, 1996; Gatt et al., 2003; Strange and
Stepien, 2007; Haponski and Stepien, 2014), we do not have a full un-
derstanding of the degree of mixing among stocks during any life stage.

Study years

Similar to all other year-classes produced during 2004–2013, weak
walleye year-classes were produced during our focal years of study,
2011 and 2012 (Walleye Task Group, 2013). Despite these similar levels
of recruitment between years, several key physical drivers differed be-
tween our study years that might have caused different habitat condi-
tions for larval walleye. For example, precipitation was higher during
spring 2011 (March–June total precipitation at Toledo Express Airport:
0.42 m) than 2012 (March–June total precipitation at Toledo Express
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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Airport: 0.28 m), which led to higher mean monthly discharges from
the Maumee River during March through June larval walleye produc-
tion period (Table 1). By contrast, air temperatures were higher during
March through May in 2012 than 2011, although air temperatures be-
came similar by June (Table 1).

General description of the model and data inputs

Many information gaps exist in our understanding of Lake Erie wall-
eye, which caused us to both make (and also avoid) many simplifying
assumptions in the ICPBM that we developed to explore stock-specific
larval dispersal and growth. For example, similar to nearly all other
freshwaterfishes andmostmarinefishes (Leis, 2007;Willis, 2011), little
is known about larval walleye movement behavior, including what fac-
tors drive movement decision-making and how movement decisions
are made. Correspondingly, we strictly modeled walleye as passive par-
ticles in this study, which also seems justified given that previous larval
walleye research has not demonstrated behavioral competency for the
sizes of larvae explored herein (Houde, 1969; Humphrey et al., 2012).
Similarly, our understanding of how biological components of habitat
quality such as zooplankton prey availability, potential competitors for
prey, and predation risk vary spatially and temporally across western
Lake Erie during the larval production period is scant. In the absence
of this information, we ignored the potential for inter- and intra-
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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specific interactions, and assumed zooplankton prey availability to be
both constant and homogeneous during the larval stage. As a result of
this suite of assumptions about larval behavior and biological processes,
our resulting ICPBM essentially describes larval walleye dispersal and
growth primarily as a function water currents and temperature, two
physical factors that have been shown to drive larval dispersal and
growth for other marine and Great Lakes fishes (North et al., 2009)
and that we feel confident in our ability to depict with our physical
model (see below).

Hydrodynamic modeling and field data input

Model simulations were carried out with hydrodynamic conditions
(currents, temperature, etc.) provided by the NOAA Great Lakes Coastal
Forecasting System (GLCFS; Schwab and Bedford, 1994). The GLCFS is
based on the Princeton Ocean Model (Blumberg and Mellor, 1987),
which solves the hydrostatic, three-dimensional (3-d) primitive equa-
tions in a 2nd order finite difference framework. The GLCFS is operated
in a real-time nowcast/forecast framework, with hourly output made
available on a 2-km structured grid for Lake Erie (21 vertical sigma
layers). Horizontal diffusion in the GLCFS is prescribed by the
Smagorinsky parameterization and vertical diffusion is governed by
theMellor–Yamada level 2.5 turbulence closure scheme. Forcing condi-
tions for the hydrodynamic model are prescribed using a natural-
neighbor interpolation from land- and buoy-based observations,
which have yielded a successful prediction of water levels, tempera-
tures, and currents in the lake (Schwab and Bedford, 1994; Beletsky
and Schwab, 2001; Chu et al., 2011). While discrepancies between ob-
served temperatures and model output tend to be most pronounced
during the spring warmup period (e.g., Beletsky et al., 2013), our
model reasonably approximated observed mean west basin (west of
−82.5°N) surface temperatures during the spring period (compared
to GLSEA data in Electronic Supplementary Material (ESM) Figs. S1a
and b and Fig. S2; but see also comparison to NDBC Buoy 45005 data
in ESM Fig. S3). Also, although recent work has shown that the interpo-
lated meteorology can cause errors in the summer circulation in the
central basin (Beletsky et al., 2013), our study focuses on spring trans-
port (April–May) in the western basin, in whichwind-field-induced er-
rors are presumed to be reduced due to the influence of hydraulically-
driven flow and the density of meteorological stations surrounding
the western basin.

Hydrodynamic output from the GLCFS was used to drive a Lagrang-
ianparticle transportmodel to simulate the trajectories of larvalwalleye
in western Lake Erie. The particle model used a 2nd-order Lagrangian
scheme (Bennett and Clites, 1987) to simulate passive, neutrally buoy-
ant particle movement in three dimensions. The Smagorinsky parame-
terization was used for horizontal diffusion (coefficient of 0.005),
based on previous calibrations (Michalak et al., 2013), and a random-
walk approach was used for vertical diffusion (0.0005 m2/s).

We tracked the advection and growth of weekly cohorts of walleye
larvae during the entire spawning season of 2011 and 2012. Because
we were primarily interested in exploring intra- and inter-annual vari-
abilities in stock mixing and its impact on stock-specific growth (not
stock-specific survival through the larval stage), we did not model ob-
served densities of larvae. Instead, we tracked the advection and growth
performance of weekly cohorts of larvae, with each cohort consisting of
5000 individuals (represented by a group of 5000 particles in the
model). Each set of larvae was seeded at 1 of 4 known larval walleye
production locations (Maumee River mouth: 41.68°, −83.49°; Detroit
River mouth: 42.02°, −83.16°; midpoint of the Ohio reef complex:
41.63°, −83.02°; Sandusky Bay mouth: 41.48°, −82.72°; Fig. 1). Al-
though walleye larvae from the Sandusky River were collected in the
river proper, particles in our model were released at the point at
which the Sandusky Bay opens into Lake Erie because Sandusky Bay is
not included in the GLCFS model domain. All particles in the model
were released at 4 m of depth, spread over a 5 m radius.
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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The release date of each weekly cohort was determined from field
observations of walleye larvae (Detroit, Maumee, and Sandusky rivers)
or eggs (Ohio reef complex), using a temperature-dependent develop-
ment function to determine larval emergence, based on McElman and
Balon (1979). During 2011, walleye eggs were observed on the Ohio
reef complex during 30 April–14 May (3 weekly cohorts modeled),
and larvae were observed in the Sandusky River during 26 April–17
May (4 weekly cohorts modeled), in the Maumee River during 26
April–31May (6weekly cohortsmodeled), and in the Detroit River dur-
ing 26 April–24 May (5 weekly cohorts modeled). During 2012, the
spawning season began earlier with eggs being observed on the Ohio
reef complex during 13 April–11 May (5 weekly cohorts modeled),
and larvae collected in the Sandusky River during 4–26 April (4 weekly
cohorts modeled), in the Maumee River during 21 March–2 May
(7 weekly cohorts modeled), and in the Detroit River during 11 April–
16May (6weekly cohorts modeled). Because the number of weekly co-
horts observed at a spawning location varied among sites and between
years, the total number of larvae modeled for a site in any given year
also varied (i.e., 5000 larvae per weekly cohort was modeled).

Simulationswere performed forward in time for 30 d, starting at the
time of release from the four spawning sites. The location of each parti-
cle (larva) and the temperature in each cell were recorded at 3 h inter-
vals. The current uncertainties and variability were accounted for by the
calibrated diffusion coefficients/schemes, as described above, and the
resultant particle patch.

Individual-based model (IBM) of walleye larvae

The IBM was constructed from previously published models
(Madon and Culver, 1993; Hanson, 1997; Johnston, 1999) with a
large majority of model parameters being experimentally derived
using walleye. The IBM can be broken into foraging, growth, and sur-
vival subcomponents. The mass-specific larval walleye foraging rate
(F; μg zooplankton/g larval mass/d), which was derived by Madon
and Culver (1993) from controlled hatchery pond experiments, was a
function of available zooplankton biomass, water temperature, and in-
dividual larval walleye mass. Larvae were assumed to be free foraging
from hatch (i.e., we assumed that no energy was available from a
yolk sac). A bioenergetics model developed specifically for larval
walleye (Madon and Culver, 1993; Johnston, 1999) was used to con-
vert energy intake (zooplankton consumption) into daily growth
(G, μg/g/d), while also accounting for daily energetic losses due to res-
piration (R, μg/g/day), specific dynamic action (SDA, unitless; i.e., costs
of digestion), egestion (E, unitless), and excretion (U, unitless), using
the following equation:

G ¼ F−F � Eð Þ−R− F−F � Eð Þ � SDA−Uð Þ: ð1Þ

Specific dynamics action was modeled as a constant proportion of
assimilated energy, E and U were modeled as functions of water tem-
perature, and R was modeled as a function of water temperature and
larval walleye mass (Hanson, 1997). The mean temperature experi-
enced by each individual during each day (8measurements) and its for-
aging success were used to determine the individual's growth for that
day based on Eq. (1) above andmodeled environmental conditions. Be-
cause of the trends in the physical model to overestimate (2011) and
underestimate (2012) surface water temperature compared to ob-
served temperatures at NDBC Buoy 45005 (ESM Figs. S3 a and b), we
also ran the IBM using the Buoy 45005 temperatures (http://www.
ndbc.noaa.gov/station_page.php?station=45005) for both years, as-
suming a homogeneous temperature across the lake. This allowed us
to compare variation in larval growth between years in order to deter-
mine how much any differences in modeled growth may be due to
the physical model versus variation in physical conditions. As spatio-
temporal heterogeneity in warming may occur in the lake, this is a
somewhat limited comparison; however, the Buoy 45005 data are the
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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Fig. 2. The combined advection patterns of simulated walleye larvae (all weekly cohorts
for each stock) in western Lake Erie during 2011 (A) and 2012 (B). Each point marks the
daily location of each larva released from each stock (Detroit River, red; Maumee River,
green; Ohio reef complex, blue; and Sandusky River, black). The beginning and end of
each yellow arrow show the weighted population centers for each stock after 15 d and
30 d, respectively (all weekly cohorts combined). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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most complete available observations for the time and area of interest.
Additionally, because the other potential observed data (GLSEA satellite
data) are more similar to the simulated temperatures of our physical
model (ESM Fig. S2), comparison to the Buoy 45005 data gives a better
sense of the potential interannual variation in simulated larval growth
based on the source of temperature data. All larvae/particles were as-
sumed to have an initial wet mass of 3.8 mg and an initial total length
of 7.8 mm (McDermott and Rose, 2000). Zooplankton biomass (equal
proportions of copepods and cladocerans) was assumed to be homoge-
neous and constant at a level of 0.5mg/L. Themodel alsowas runwith a
zooplankton biomass of 0.2 mg/L to begin to test sensitivity. Zooplank-
ton biomass levels were chosen to fall within ranges observed in the
western basin of Lake Erie during May 2000–2013 (R. D. Briland, The
Ohio State University, 2014, personal communication; Frost and
Culver, 2001). In the western basin, particularly in recent years, zoo-
plankton biomass may be lower when the earliest walleye cohorts
enter the lake (i.e., during April; CJM, personal data) and also is likely
to be spatially heterogeneous due to various biological and physical pro-
cesses. The IBM was built and run in Matlab 2012b (The Mathworks,
Inc., 2012).

Analyses

Because our modeled particles (i.e., larvae) tended to be found near
the water surface in the hydrodynamic/Lagrangian trajectory model
(N95% within the upper 3 sigma levels; EJA and MEF, unpublished
data), we focused on the two horizontal dimensions. In addition to visu-
alizing the advection pathways of individuals and weekly cohorts, we
used a variety of summary statistics to describe advection and growth
patterns. First, we calculated the weighted mean center of each stock's
advection pathway,which gives a sense of the concentration and spread
of larvae over time due to passive drift. To do so, we combined cohorts
from each stock within a year, irrespective of release day, and plotted
the advection pathways of all individuals from each weekly cohort to-
gether. We then calculated the location of the center of the population
byweighting the density of larvae after 15 d and 30 d of advection. Sec-
ond, to identify the degree and location of stock mixing, we calculated
mixing proportions among stocks over time based on grid-cell co-
occupancy. Mixing was calculated only while larvae were in the system
(i.e., weekly cohorts were not combined as was done above to calculate
theweightedmean center). Third, from the larval growth data, we used
a simple linear regression to test for relationships between release
day and total predicted growth. Analyses were performed in Minitab
16 (Minitab, Inc. 2013) and Matlab 2012b (The Mathworks, Inc. 2012).

Results

Larval advection patterns

While advection patterns and stock mixing varied within and be-
tween years, somepatterns also emerged. First, the combined advection
pathways of each larvae from each stock show that the full-season,
basin-scale advection patterns were strikingly similar during both
2011 and 2012 (Fig. 2; also see ESM Video S1 and S2 for movies of the
advection patterns of the peak weekly cohorts from each stock). Most
larvae produced on the Ohio reef complex remained near the reefs,
with some being advected to the west, to the north, or southeast into
the central basin (especially in 2012; Figs. 2 and 3A; see ESM Figs. S4
and S5 for advection patterns of all weekly cohorts). The weighted
mean center of this stock moved only slightly eastward between day
15 and day 30 during 2011 (b5 km) with a much stronger eastward
movement during 2012 (~25 km; Figs. 2 and 3). Most Maumee River
larvae cohorts were advected north in both 2011 and 2012, with some
weekly cohorts being advected to the east, along the southern shoreline
in 2012 (Fig. 2; also see middle panels in ESM Figs. S4 and S5). The
weighted mean center of this stock moved only slightly northeast
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
growth, mixing, and stock discrimination, J. Great Lakes Res. (2015), http:
between day 15 and day 30 during 2011 (b5 km) and strongly east dur-
ing 2012 (~15 km; Fig. 2). Detroit River larvae were advected south be-
fore spreading to the east and north, many toward and through the
Pelee Passage into the central basin (Figs. 2 and 3; ESM Video S1 and
S2 and ESM Figs. S4 and S5). The weighted mean center of this stock
moved southeast in 2011 (~30 km) and due east in 2012 (~25 km;
Fig. 2). Sandusky River larvae were largely advected east toward the
central basin, although some also drifted north toward the Ohio reef
complex, especially in 2012 (Figs. 2 and 3D). The weightedmean center
of this stock moved northeast between day 15 and day 30 during both
2011 (~25 km) and 2012 (~20 km; Fig. 2).

The Detroit River and Ohio reef complex stocks generally had the
greatest spatial coverage at any particular time (Figs. 4A and B) and
over the full season (Fig. 2). In 2011, the total number of 2 × 2 km
cells occupied by larvae at some point were 871 (Detroit River), 607
(Ohio reef complex), 275 (Sandusky River), and 237 (Maumee River).
The number of cells occupied at some point increased for all spawning
stocks in 2012 as compared to 2011 (Figs. 4A and B; Detroit River =
1103 cells; Ohio reef complex = 969 cells; Maumee River = 562 cells;
and Sandusky River = 475 cells).

Mixing among stocks showed both similarities and differences be-
tween years. When stock mixing was defined as at least one larva
from at least two different stocks being present in the same 2 × 2 km
cell at the same time, substantially higher mixing for a longer duration
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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Fig. 3. Advection patterns of weekly cohorts of walleye larvae from four western Lake Erie spawning locations (Detroit River, red; Maumee River, green; Ohio reef complex, blue; and
Sandusky River, black) during 26 April (A), 9 May (B), 24May (C) 2011 and 11 April (D), 25 April (E), and 10May (F) 2012. These weeks represent early, middle, and late cohorts, respec-
tively, for each year. Note that not all stocks had larvae released during each week. In each panel, 5000 larvae were released from each spawning location. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)
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occurred in 2012 than during 2011 (Fig. 4C). Additionally, mixing was
more spatially widespread in 2012 than in 2011 (Fig. 5). Substantial
mixing of Ohio reef complex and Maumee River larvae occurred during
both years in cells located in thewesternmost part of the west basin (in
Ohio waters near the Maumee River; green circles in Fig. 5), whereas
mixing of Ohio reef complex and Detroit River larvae was most preva-
lent in offshore waters west of the islands (red circles in Fig. 5). Like-
wise, substantial mixing of Ohio reef complex and Sandusky River
larvae was predicted to occur along the southern shore of the central
basin located east of Sandusky Bay (black circles in Fig. 5). Despite
these commonalities, inter-annual variation in stock mixing occurred.
For example, Ohio reef complex and Detroit River larvae mixing oc-
curred farther north (nearer to the northern shoreline) in 2012 than
in 2011, whereas mixing of Maumee River and Detroit River larvae oc-
curred over most of the southern shoreline (including the entire west-
ern basin and western part of the central basin) in 2012 but not in
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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2011 (blue crosses in Fig. 5). Additionally, during 2012, a small degree
of mixing among Maumee, Detroit, and Sandusky River larvae was ob-
served (primarily near and to the east of the mouth of Sandusky Bay);
but during 2011, virtually none was detected (Fig. 5).

We also found that stock mixing varied within and between years
and among cohorts within a year when mixing was measured as the
proportion of cells that contained at least one individual from two or
more stocks (Figs. 6A and C) and the proportion of individuals of a
stock that were found in a cell with at least one individual from another
stock (Figs. 6B and D). Mixing between stocks was generally less pro-
nounced during 2011 (Fig. 6A) than during 2012 (Fig. 6C), although a
peak of ~60% of the cells in which Maumee River larvae occurred
also contained at least oneOhio reef complex larva during the 2011 sim-
ulation (day 145; seeM-R in Fig. 6A) and 2012 simulation (day 125; see
M-R in Fig. 6C). Variable cohort-specific advection led to this pattern,
including asymmetries in stock mixing. Most notably, during 2011,
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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Fig. 4.The total number of 2 × 2 km cells inwestern Lake Erie thatwere occupied during2011 (A) and 2012 (B) bywalleye larvae from theDetroit River,Maumee River, Ohio reef complex,
and Sandusky Rive spawning stocks. Also reported is the total number of cells co-occupied by larvae from at least two stocks during 2011 and 2012 (C).
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~70% of the Sandusky larvae were predicted to co-occur with at least
one Ohio reef complex larva during days 135–145 of the simulation
(see S-R in Fig. 6B) whereas only 0–5% of Ohio reef complex larvae
were predicted to co-occur with Sandusky River larvae during the
same time period (see R-S in Fig. 6B). This result occurred due to a rel-
atively small number of the Ohio reef larvae being advected south and
east along the southern shore of the central basin at a time when San-
dusky River larvae were in the system (e.g., Fig. 3A, ESM Video S1),
whereas few Sandusky larvae were advected northward where thema-
jority of the Ohio reef complex larvae remained (Figs. 2 and 3; ESM
Video S1). The Maumee River and Ohio reef complex larvae provide a
secondexample. Ohio reef complex larvaewere predicted to consistent-
ly co-occur in cellswith larvae from theMaumeeRiver early in the larval
production season during 2012 (days 105–125; see R-M in Fig. 6C),
whereas cells with at least one Maumee River larva that also had an
Ohio reef complex larvae were increasing during this same time period
(see M-R in Fig. 6C). After day 125, mixing of these two stocks strongly
decreased (Fig. 6C), owing to changing advection patterns (Figs. 2 and
3; ESM Video S2 and ESM Fig. S5). This pattern also is reflected in the
proportion of individual larva that co-occurred with the other stock,
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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although the proportion of Maumee River larvae that co-occurred
with Ohio reef complex was relatively low (see M-R in Fig. 6D) when
compared to the proportion of shared cells (see M-R in Fig. 6C).

Inter-cohort and stock-specific differences in growth patterns

We also explored how different release dates and advection paths
could influence growth patterns among cohorts and stocks, as well as
how the scale of heterogeneity in habitat quality related to stock-
specific patterns in growth. In terms of habitat quality, we focused on
temperature at the surface (0mdepth) because larvaewere concentrat-
ed there in the model, the water column was isothermal during the lar-
val production season (MEF and EJA, unpublished data), and surface
temperature can have a strong influence on larval fish bioenergetics
and zooplankton (prey) productivity (Frost and Culver, 2001;
Roderick and Kapoor, 2008; but see Myers, 1997).

During 2011 and 2012, our model showed that surface water in
western Lake Erie warmed earlier along the southern and western
shoreline relative to the rest of the shoreline, with open waters
warming later (Fig. 7; ESM Video S3 and S4). Intermittent patches of
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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Fig. 5. Spatial distribution of mixing of walleye larvae in western Lake Erie during 2011
(A) and 2012 (B). Cells (2 × 2 km) in which larvae from two stocks co-occurred in space
and time are denoted as follows: green circles denote mixing of Ohio reef complex and
Maumee River larvae; red circles denote mixing of Ohio reef complex and Detroit River
larvae; black circles denote mixing of Ohio reef complex and Sandusky River larvae; and
blue crosses denotemixing ofMaumeeRiver andDetroit River larvae. Low levels ofmixing
between some stocks not shown to reduce clutter. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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coolerwater also occurred throughout the season, whichwere associat-
ed with Detroit River inflow (based on their location and movement).
Warming occurred earlier during 2012 than during 2011; however, by
day 140 (19–20 May), temperatures were similar between years
(Figs. 7 and 8). Thesefindings are supported by basin-wide observations
of surface temperature recorded by Great Lakes Surface Environmental
Analysis (GLSEA) satellite imagery (ESM Fig. S1a, but see also NDBC
Buoy 45005 temperature data in ESM Fig. S1b).

Inter-stock differences in the thermal regime experienced by larvae
were evident. During 2011, larvae from all stocks experienced mean
30 d temperatures that were intermediate relative to themodeledmin-
imum andmaximum temperatures in the lake (Fig. 8A). Themean tem-
peratures experienced by weekly cohorts also generally increased in a
simple linear fashion with a release date. During 2012, the mean tem-
perature experienced by larvae from different stocks and cohorts was
more variable. For example, several Detroit River weekly cohorts expe-
rienced near-maximum temperatures, whereas others experienced
near-minimum temperatures, with no obvious linear warming trends
being evident for any stock (Fig. 8B). Likewise, the temperatures expe-
rienced by cohorts from different stocks released during the same
week also varied more widely in 2012 than 2011 (compare vertical
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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spread in points between Figs. 8B and A, respectively). Additionally,
unlike 2011, later-producedweekly cohorts of larvae did not always ex-
perience warmer temperatures than their earlier-produced counter-
parts during 2012 (e.g., see Detroit and Maumee River cohorts in
Fig. 8B).

Within-stock differences in temperature experienced by larvaewere
related to advection patterns. For example, early cohorts released from
the Maumee River during 2012 were advected into the early warming
water near the Maumee River mouth and experienced near maximum
temperatures. By contrast, and counter to our predictions (sensu
Roseman et al., 2005), Maumee River cohorts produced in the middle
of the larval production period experienced intermediate temperatures
with increased advection toward the southern shore (Fig. 8B; ESM
Fig. S5). Also, early season cohorts from the Detroit River during 2012
were advected along the northern shore of the west basin, which was
warmer than the more southerly waters of the open lake that later-
spawned Detroit River cohorts experienced (Fig. 8B, ESM Video S2).
The earlier Sandusky River cohorts of 2012 were primarily advected
eastward along the southern shoreline of the central basin, where
they tended to experience warmer temperatures than the last weekly
cohort (Fig. 8B), which was primarily advected away from the shore
(ESM S5).

Because the prey resource environment was held constant in our
model and all larvae began at the same size in our model, growth in
our simulations could only vary as a function of experienced tempera-
ture. The temperature differences experienced by individuals from the
various cohorts and stocks (Fig. 8) led to small differences in observed
daily growth rates, which in turn, led to large differences in the biomass
accumulated over the 30 d simulations. During 2011, the mean wet
mass of cohorts of 30 d old larvae increased linearly with release date
(linear regression, r = 0.97; ANOVA regression F1,19 = 269.0,
P b 0.001; Fig. 9A), whereas during 2012, growth rates were unrelated
to release date (linear regression, r = 0.24; ANOVA regression F1,24 =
1.4, P= 0.252, Fig. 9B). Biomass accrual was greater for larvae released
before day 120 (29–30 April) during 2012 than during 2011, but greater
for larvae released after day 120 during 2011 than during 2012 (Fig. 9).
The range in the finalmass at 30 d amongweekly cohorts from different
stocks also was substantially higher in 2011 than in 2012 (Fig. 9).

The 30 d growth trends suggest more variable growth rates among
stocks and weekly cohorts observed during 2012 relative to 2011
(Fig. 10). Although early produced cohorts typically had slow growth
rates during both years, nearly all of these cohorts were larger than
later-produced cohorts when comparing individual mass at a particular
day during 2011 (i.e., on any given day, older larvae often tended to be
larger than younger larvae; Fig. 10A). This finding was less apparent in
2012 (Fig. 10B), owing to less uniformity in temperatures experienced
by weekly cohorts (Fig. 8B). These findings also appear robust to zoo-
plankton density, as lowering zooplankton density to 0.2 mg/L resulted
in a proportional reduction in growth thatwas similar across all cohorts
(i.e., the pattern was similar, but final larval sizes were reduced; ESM
Figs. S6a and b).

The wider range of advection among stocks during 2012, as com-
pared to 2011, also generated more variability in growth rates within
and among weekly cohorts (Fig. 11). The ratio of the range of 30 d
wetmass (maximum–minimum) tomean30dwetmasswithinweekly
cohorts gives a sense of the range of habitat quality (i.e., temperature)
experienced by larvaewithin each cohort. During 2012, the ratio tended
to bemore variable across the full season than during 2011 although the
ratio also was high during the early part of 2011 (Fig. 11). With excep-
tion of the Detroit and Maumee River stocks in 2011, which demon-
strated consistently low ratios, high variability in ratios among weekly
cohorts within a stock was evident during both years (especially for
the Ohio reef complex and Sandusky River larvae; Fig. 11).

When larval growth was modeled using the NDBC Buoy 45005 sur-
facewater temperatures, similar and temporally linear trends in growth
occurred during 2011 and 2012, although growth was initially greater
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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during 2012 among the earliest larval cohorts compared to growth
using the physical model's simulated temperatures (ESM Fig. S7).
Larval growth tended to be lower during 2011 when using water tem-
peratures simulated by the physical model than growth using the
Buoy 45005 data. During 2012, larval growth initially tended to be
greater using water temperatures simulated by the physical model
than growth using the Buoy 45005 data before becoming lesser for the
later cohorts.
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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Discussion

Our model simulations demonstrate some of the ways in which
ICPBMs can be used to help begin to understand fish recruitment pat-
terns and variability in large freshwater ecosystems, including western
Lake Erie. Below, we discuss how our ICPBM has improved our under-
standing of stock-specific advection and growth patterns of larval wall-
eye in western Lake Erie walleye, as well as illustrate some of the ways
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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in which this understanding could benefit themanagement of Lake Erie
walleye. Afterwards, we identify some limitations to our ICPBM and
point out key information gaps that could improve the use of ICPBMs
for fish recruitment investigations in general. Finally, we close with a
synopsis of the key benefits that ICPBMs can offer Great Lakes fisheries
investigations.

Larval advection, habitat quality, and growth

Specific to Lake Erie walleye, our findings indicate that 1) advection
can differ among stocks for several reasons, including the timing and lo-
cation of spawning and variability in wind-driven circulation, and
2) variation in advection patterns can interact with spatiotemporal var-
iation in water temperature to produce stock-specific and inter- and
intra-cohort differences in larval growth. In turn, variable advection
and warming patterns, both within and between years, hold great po-
tential to influence recruitment to older life stages through their direct
effect on larval growth (reviewed by Peck and Hufnagl, 2012). Further,
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
growth, mixing, and stock discrimination, J. Great Lakes Res. (2015), http:
our findings suggest that different mechanisms may operate during
the larval stage to cause poor walleye growth. For example, during
2011, temporal variation in water temperature interacting with timing
of spawning was the primary driver of growth variation, whereas in
2012, spatial variation in water temperature interacting with larval ad-
vection patterns was more important to explaining growth patterns. In
this way, the weak year-classes produced during both 2011 and 2012
(Walleye Task Group, 2013) could have resulted from very different
processes operating during the larval stage. Comparison of our results
with future modeling of strong year-classes (e.g., 1996, 2003; Walleye
Task Group, 2013) could help identify patterns that enable strong larval
growth and recruitment. The qualitative pattern of higher growth rates
among later cohorts in 2011 compared to 2012was observed in thefield
as well although simulated mean individual growth rates were some-
what higher than observed in southern western basin field sampling
during spring (mid-April throughMay) of 2011 and 2012 (CJM, unpub-
lished data; 2011: TL=7.74+0.13*(age in days), P b 0.0001, R2=0.42,
F1,136 = 97.33; 2012: TL = 7.57 + 0.11*(age in days), P b 0.0001, R2 =
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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0.42, F1,64 = 45.69). This likely reflects the assumption of a homoge-
neous zooplankton field, in addition to other simplifications and as-
sumptions in the physical and bioenergetics models.

In general, growth and recruitment (or year-class strength) should
depend on the relationship between the spatiotemporal advection pat-
tern and the spatiotemporal extent of high-quality habitat (area and du-
ration). Thematch–mismatch hypothesis (Cushing, 1990) suggests that
timing of the larval production period in relation to prey (zooplankton)
availability is critical. However, given the dependence of larval dispersal
on hydrodynamic advection, spatial overlap may be equally as impor-
tant (Durant et al., 2007).

In addition to the considering the overlap of larvae with habitat in
both space and time, we need to consider the scale/magnitude of het-
erogeneity in habitat quality when trying to understand stock-specific
patterns in growth. Fromour results, we can hypothesize that, if optimal
conditions are found only in small areas or for short durations,
individual-level larval advection may be largely irrelevant, and growth
and future recruitment would be low since a large proportion of larvae
are likely to end up in an area of low or intermediate habitat quality. For
example, regardless of whether the advection kernel of a stock is large
or small, the probability that many or most of the larvae are advected
into the high-quality region is low because of its limited spatial extent.
However, at the population level, these conditions, especially if the
location of high-quality habitat varies, may favor broad advection
(e.g., through larval release from multiple spawning sites), so that at
least some recruitment occurs. If optimal or near-optimal conditions
are broadly distributed (homogeneous) in space and time, individual-
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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level larval advection also may not be particularly important because a
large proportion of individual larvae and the population are likely to ex-
perience high-quality conditions regardless of their advection trajecto-
ries. Under these conditions, growth and recruitment rates would be
expected to be higher relative to the preceding poor habitat-quality
condition. By contrast, when heterogeneity in high-quality habitat is
great, individual-level larval advection would be expected to play an
important role in determining growth and recruitment rates as the po-
tential for larvae to find suitable habitat could range from high to low
(depending on the timing of spawning, water circulation, and spatio-
temporal variability in habitat conditions). Under these conditions,
growth variation at the population level may also be common, since
spawning site location and circulation patterns may be more likely to
lead to advection into either more or less favorable habitat (i.e., larvae
from particular stocks may perform consistently better than larvae
from other stocks).

Consistent with other freshwater and marine studies that have
shown temperature to be a major driver of larval growth (Roderick
and Kapoor, 2008), our modeling showed how different advection pat-
terns could lead to different growth patterns by influencing only the
amount of available thermal habitat to larval walleye (Fig. 9). This de-
pendence of growth on temperature, in turn, led to some unexpected
stock-specific growth patterns. For example, because previous research
has suggested the southern nearshore area to have the highest-quality
habitat for walleye larvae in western Lake Erie (Roseman et al., 2005),
we expected those stocks with high average larval advection rates
over this area (e.g., Maumee River and the Ohio reef complex stocks;
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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Fig. 2) to have a growth advantage over other stocks. While this south-
ern portion of the western basin did tend to have earlier warming sur-
face water, as well as more high quality thermal habitat relative to
offshore waters, it was not uniformly high in quality. As a result, high
variation in growth rates was observed for Maumee River and Ohio
reef complex larvae despite their frequent advection into southern
nearshore areas. Further, areas of high-quality habitat developed else-
where in the basin, particularly later in the larval production season,
which leads to other stocks demonstrating rapid growth (e.g., Detroit
River stock). This disparity in our results relative to previous field stud-
ies (e.g., Roseman et al., 2005) points to: 1) a gap in our understanding
of zooplankton prey availability in offshore waters of the west basin,
2) the need for future modeling efforts to consider more realistic
(e.g., heterogeneous) zooplankton preyfields, and 3)model simulations
that are conducted during years of strong recruitment (e.g., 1996, 2003;
Walleye Task Group, 2013) in which advection patterns and habitat
quality likely differ. With respect to this last point, we would expect to
often find an intermediate to large proportion of walleye larvae from
all stocks being dispersed into areas of sub-optimal habitat quality. Ad-
vection andmixing of some or all stocks might bemore concentrated in
high-quality habitat and (or) high-quality habitatmay bemore spatially
and temporally widespread during years of strong recruitment relative
to our study years.

Lake Erie fisheries management implications

Because larval growth can influence future growth and survival, var-
iation in the timing of spawning, larval advection, and habitat (thermal)
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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quality that eventually cause differences in stock-specific larval growth
should be expected to drive inter-annual variability in the contribution
that each stockmakes to the new year-class. As a result, Lake Erie's wall-
eye population is likely supported by different stocks during different
time periods, analogous to Pacific salmonines (Schindler et al., 2010)
and other marine species (Thibault et al., 2012; Yates et al., 2012).
Given the high variability in habitat conditions experienced by our
focal western Lake Erie walleye stocks, we strongly encourage agencies
to protect spawning stock diversity, as a diverse “portfolio” of stocks can
help buffer the population (and the fisheries it supports) against wide
swings in recruitment, not to mention protect the population in the
face of continued human-drive change (Schindler et al., 2010). Most
certainly, continued modeling in which multi-year comparisons are
conducted that also consider the numbers of eggs or larvae produced
at each site will help to identify how the relative contributions of each
stock to the new year-class vary and how this variance relates to bio-
physical processes.

In addition to helping to understand recruitment, accounting for the
advection of eggs and larvae and the degree towhich discrete spawning
stocks overlap ormix during early life stages can help to improve efforts
to discriminate among stocks. With improved stock discrimination ca-
pabilities, management agencies would be better positioned to under-
stand the contribution of recruits that each stock makes to the broader
population (and fisheries that it supports). For example, we now
know from our modeling that wind-driven advection can cause geo-
graphically discrete spawning stocks to mix considerably in both
space and time during the larval stage (e.g., larvae produced on the
Ohio reef complex frequently mixed with larvae from other stocks and
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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Maumee and Detroit larvae also mixed at times; see Figs. 5 and 6). Not
accounting for this mixing prior to the collection of individuals
(i.e., larvae) in seemingly isolated spawning locations for stock discrim-
ination purposes, which has been a common practice in the fisheries
stock discrimination literature, might limit our ability to use natural
tags (e.g., otolith microchemistry, genetics; Campana, 1999; Miller
et al., 2005; Ludsin et al., 2006; Perrier et al., 2011) as stock markers
for identifying the natal origins of recruits to the fishery. For this reason,
using biophysical models to account for advection pathways by
backtracking or hindcasting individual larvae to their hatching location
(Christensen et al., 2007) may improve stock discrimination in mixed
populations by allowing initial group assignments to be revised, espe-
cially in species inwhich adult spawning locations are uncertain (Fraker
et al., in review).

ICPBMs: key limitations and research needs

While our ICPBM has provided insight into the degree to which dis-
crete spawning stocks likely mix during early life stages and how
spawning time and location, advection patterns, and heterogeneity in
thermal habitat can potentially influence larval walleye growth,
addressing some of the limitations and simplifications of our model
will undoubtedly improve its value in understanding the walleye
recruitment process. For example, smaller scale processes (e.g. vertical
mixing and bottom topography/velocities; North et al., 2009;
Thygesen, 2011) that can be important to larval transport and foraging
may not be represented in our hydrodynamic and particle tracking
model. Likewise, the grid resolution of most ICPBMs, including our
own, tends to range from tens of meters to a few kilometers (e.g., ours
has a 2 × 2 km resolution), which is a resolution that is larger than
that at which most individual-level interactions occur (e.g., foraging
and predator–prey interactions occur at the scale of a few millimeters
to a few meters; Peck and Hufnagl, 2012). This mismatch in scale can
Please cite this article as: Fraker, M.E., et al., Stock-specific advection of larv
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pose difficulty in realistically accounting for the role that small-scale
physical processes play in influencing larval foraging, growth, and
survival (e.g., Langmuir cells that may concentrate zooplankton; turbu-
lence that can influence larval foraging; chemotaxis that may influence
predator–prey interactions; Ledbetter, 1979; Tollrian andHarvell, 1999;
Pepin, 2004; Hay, 2012; North et al., 2009; Peck and Hufnagl, 2012). In
turn, ability to use ICPBMs to truly describe larval foraging, growth,
and survival might remain somewhat circumspect until these types of
small-scale interactions can be practically captured in lake- or basin-
scale level models.

In addition to these limitations of the physicalmodel, our ICPBM also
could be improved from a biological standpoint. For example, late in the
larval period, individuals often do become large enough to exhibit hor-
izontal swimming behavior (Leis, 2007; Willis, 2011) and could exhibit
similar types of responses to predation risk-foraging gain tradeoffs ob-
served in older individuals (Lima, 2002; Fiksen and Jorgensen, 2011).
While the sizes of larvae modeled herein were small enough that hori-
zontal swimming behavior should be a non-factor (Houde, 1969;
Humphrey et al., 2012), no research has been conducted to know exact-
ly when larval walleye become competent enough to adjust their verti-
cal position in the water column, as well as what environmental cues
mightmotivate active vertical movement of walleye larvae. Thus, a bet-
ter understanding of vertical movement behavior is needed, and ac-
counting for it in our model could prove highly beneficial, as active
vertical movement has been shown to greatly affect larval fish dispersal
trajectories in marine ecosystems (Willis, 2011). Additionally, account-
ing for possible variation in initial larval size at hatch and individual-
level physiological variation (Rice et al., 1993; Peck and Hufnagl,
2012) alsomay have led to improved estimates of the impact of thermal
habitat on walleye growth. Although overcoming some of these limita-
tions will be challenging, these collaborations should prove fruitful,
given the value that ICPBMs to fisheries science in other ecosystems
(Miller, 2007; Peck and Hufnagl, 2012).
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Benefits of ICPBMs to Great Lakes fisheries investigations

Biophysical processes have long been considered important drivers
of marine fish early life history, and are increasingly recognized as po-
tentially important to many Great Lakes species (Ludsin et al., 2014).
The variable patterns in larval advection, stock mixing, and growth
that we found for walleye have been observed in some marine systems
(e.g., Searcy and Sponaugle, 2000; Sponaugle and Pinkard, 2004; Siegel
et al., 2008) and seem likely to occur in other Great Lakes species
with pelagic larvae (e.g., yellow perch, lake whitefish Coregonus
clupeaformis), although specific patterns may depend on the species or
lake. ICPBMs should continue to be useful to identifying which large
scale biophysical processes matter andwhy. A potentially fruitful meth-
od in future studies is to contrast years of strong and weak year-classes.
If sufficient meteorological and biological data are available, the bio-
physical patterns in these years can be simulated and identified. The
ICPBM could then be used to test the sensitivity of recruitment to vari-
ous inputs (e.g., warming rates, wind direction, timing of precipitation,
timing and location of spawning) under hypothetical conditions. Pro-
cesses identified as important could then be tested, using observed
data or data from other years, with hypotheses being refined as needed.
This approach requires access to monitoring data and collaboration be-
tween multiple groups (e.g., physical modelers, fisheries ecologists,
state, provincial, and Federal agencies); fortunately, these kinds of
data are often available, especially for large lakes such as the Laurentian
Great Lakes (e.g., Zhao et al., 2009; Ludsin et al., 2014).
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The use of ICPBMs can complement and even change our existing
understanding of the biology of many species and may produce impor-
tant ideas for theirmanagement and conservation. For example, ICPBMs
offer an approach to better understand population connectivity that
might be important to fisheries management (Peck and Hufnagl,
2012). In the case of Lake Erie, those walleye larvae advected out of
the western basin may end up providing the recruits that support the
large walleye populations found in both the central and eastern basins
of the lake (Walleye Task Group, 2013). While this hypothesis needs
testing, if true, thenmanaging those spawning stocks that contribute re-
cruits to the central and eastern basin of the lake might be even more
important than previously thought. Similarly, ICPBMs offer a means to
better understand population demographics, structure, and dynamics.
For example, an understanding of the degree to which stocks mix and
experience similar environmental conditions canhelp us potentially un-
derstand why annual recruitment events are large (e.g., all stocks expe-
rience favorable conditions for growth and survival during the larval
stage), intermediate (e.g., some, but not all, stocks experience favorable
conditions), or small (e.g., all stocks experience unfavorable conditions)
in size. Likewise, ICPBMs can improve our understanding of stock-
specific contributions of recruits to the fishery by improving stock
discrimination capabilities (Fraker et al., in review), as well as by
allowing us to account for prior, stock-specific environmental histories.
Finally, ICPBMs may offer a complementary, or potentially improved,
approach to fishery management by offering ways to bring an ecologi-
cal, mechanistic viewpoint into management and providing a means
al walleye (Sander vitreus) inwestern Lake Erie: Implications for larval
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for ecosystem-based management to be practiced. These abilities, in
turn, offer a great opportunity to improve our understanding of the re-
cruitment process, which can only help agencies keep their important
fisheries sustainable in the face of continued human-induced ecosystem
change (Scavia et al., 2014). For this reason,we encourage continued ef-
forts by fisheries scientists to collaborate with physical scientists and
ecologists to continue to develop ICPBMs in freshwater ecosystems
such as the Laurentian Great Lakes.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jglr.2015.04.008.
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