
Zero-Inflated Modeling of Fish Catch per Unit Area Resulting
from Multiple Gears: Application to Channel Catfish and

Shovelnose Sturgeon in the Missouri River

ALI ARAB*1

Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA

MARK L. WILDHABER

U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri 65201, USA

CHRISTOPHER K. WIKLE AND CASEY N. GENTRY
2

Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA

Abstract.—Fisheries studies often employ multiple gears that result in large percentages of zero values. We

considered a zero-inflated Poisson (ZIP) model with random effects to address these excessive zeros. By

employing a Bayesian ZIP model that simultaneously incorporates data from multiple gears to analyze data

from the Missouri River, we were able to compare gears and make more year, segment, and macrohabitat

comparisons than did the original data analysis. For channel catfish Ictalurus punctatus, our results rank

(highest to lowest) the mean catch per unit area (CPUA) for gears (beach seine, benthic trawl, electrofishing,

and drifting trammel net); years (1998 and 1997); macrohabitats (tributary mouth, connected secondary

channel, nonconnected secondary channel, and bend); and river segment zones (channelized, inter-reservoir,

and least-altered). For shovelnose sturgeon Scaphirhynchus platorynchus, the mean CPUA was significantly

higher for benthic trawls and drifting trammel nets; 1998 and 1997; tributary mouths, bends, and connected

secondary channels; and some channelized or least-altered inter-reservoir segments. One important advantage

of our approach is the ability to reliably infer patterns of relative abundance by means of multiple gears

without using gear efficiencies.

The problem of a large proportion of zero values is

common with data obtained from ecological studies

involving counts of abundance, presence–absence, or

occupancy rates (Clarke and Green 1988; Welsh et al.

1996; Berry et al. 2005; Martin et al. 2005). Ignoring

and excluding zero values from the analysis of data

obtained from field studies can result in loss of

important information. For example, when studying

abundance or presence–absence of species, a large

proportion of zero values might indicate that the

species is rare or hard to detect. Rare species and those

with low detection probability are common in

ecological studies, and standard distributions, such as

Poisson, binomial, and negative binomial, do not

provide a good fit to zero-heavy data. Zero-inflated

modeling, which allows the model to account for a

large proportion of zero values, is an appropriate

approach to modeling zero-heavy data (Lambert 1992;

Hall 2000). Formal testing procedures are available to

determine when zero-inflated models (e.g., zero-

inflated Poisson) are preferable over standard models

(e.g., Poisson) for models without random effects, such

as the score test of Van Den Broek (1995) and its

extended version (Jansakul and Hinde 2002). For

random effect models, general model selection tools,

such as Akaike’s information criterion and Bayes

factors, can be used, depending on the modeling

approach. However, when a very high percentage (i.e.,

more than half) of zero values are present in the data, a

clear departure from the Poisson assumption is

indicated, and conducting such formal tests is not

appropriate.

Two popular models that account for data with

excess zeros are the zero-inflated Poisson (ZIP) and the

zero-inflated negative binomial (ZINB). The ZIP

model is especially useful in analyzing count data

with a large number of zero observations, and the

ZINB model is more appropriate for cases where an

upper bound exists for the response. The ZIP model

has been applied to horticulture (Hall 2000), manu-

facturing (Lambert 1992), and other fields of study,

including health operations (Wang et al. 2002),
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meteorology (Wikle and Anderson 2003), and ecology

(Welsh et al. 1996; Martin et al. 2005). Given the large

number of zeros that occur in fisheries data, we

propose that a ZIP model could be used to determine

which factors are related to identifying fish species

occurrence and which are related to catch rates of fish.

In 1995, the U.S. Geological Survey (USGS) and the

Montana Department of Fish, Wildlife and Parks

studied benthic fishes in the warmwater portion of

the Missouri River system (Berry and Young 2001;

Berry et al. 2005). The Missouri River extends 2,339

mi from southwest Montana to the Mississippi River.

Benthic fishes live or feed on the river bottom and are

of particular interest because of their sensitivity to

changes in habitat. The main goal of the study was to

obtain the data needed to improve river management

for benthic fishes by evaluating their status, distribu-

tion, and habitat associations in the Missouri River.

As is common in fisheries field studies, the data

were obtained from multiple gears and include a large

proportion of zeros, which makes analysis of the data

complicated. Using standard parametric statistical

methods on data from each gear separately, Berry et

al. (2005) excluded several segments and macro-

habitats from the analysis owing to high numbers of

zero observations and probable violation of normality

and homogeneity of variance assumptions. Berry et al.

(2005) were limited by the large percentage of zero

observations in the data set, which caused a loss of

power due to combining data at larger spatial and

temporal scales and analyzing each gear separately.

These problems created issues and constraints on usage

of the standard classic parametric statistical methods,

such as analysis of variance (ANOVA), employed by

Berry et al. (2005) to analyze these data.

Our goal was to develop and implement a modeling

framework that would allow meaningful ecological

interpretations based on the model results and increase

the predictive precision of the model. The type of gear,

macrohabitat, segment, and year could help identify

characteristics explaining where certain species are

most likely to populate. Also of interest is the large

number of zeros in the data that cannot justifiably be

deleted from the analysis. Therefore, these zeros must

somehow be accounted for in the modeling process.

The chosen model for these data is the ZIP model,

which will explain the mean fish count and the zero-

inflation probability (i.e., excess zero observations).

We consider a Bayesian approach, which provides a

flexible modeling framework and is easy to implement

for the ZIP model with random effects. Use of random

effects in the model is essential, in that it helps account

for uncertainties and obtain more valid and compre-

hensive inference compared to models with fixed

effects only.

To demonstrate this approach, the channel catfish

Ictalurus punctatus and shovelnose sturgeon Scaphi-
rhynchus platorynchus were considered. The channel

catfish serves as a good starting point for the analysis

because it is more of a habitat generalist and is quite

common in the Missouri River. The shovelnose

sturgeon is of increasing interest to researchers because

it serves as a surrogate for the pallid sturgeon S. albus,

an endangered species (Ruelle and Keenlyne 1994;

Bramblett and White 2001). The shovelnose sturgeon

is more of a habitat specialist and is much less

populous than the channel catfish. The results for these

two species provide insight into analyses of similar

fisheries data.

Methods
Data Collection

Twenty-six different species of benthic fish (Berry et

al. 2005) were included in the Missouri River Benthic

Fishes Study (MRBFS). To analyze the data, research-

ers divided the Missouri River into three zones: the

upper or least-altered zone, the middle or inter-

reservoir zone, and the lower or channelized zone

(Figure 1). The least-altered zone included the lower

Yellowstone River. The inter-reservoir zone was

characterized by short riverine segments between the

six large mainstream reservoirs. The channelized zone

was channelized for navigation, and flows were

controlled by discharges from upstream dams and by

inputs from tributaries. Each zone was then divided

into segments, creating a total of 27 segments for the

entire river. The river was partitioned into 10–100-km-

long segments based on geomorphic (e.g., tributaries,

geology) and constructed (e.g., impoundments, chan-

nelization, urban areas) features. Of the 27 segments

included in the study design, only 15 were sampled

during the 3 years of the study (Figure 1). The least-

altered zone included segments 3, 5, and 9; the inter-

reservoir zone included segments 7, 8, 10, 12, 14, and

15; and the channelized zone included segments 17, 19,

22, 23, 25, and 27 (Figure 1).

The six primary macrohabitats found in the river

were identified. These macrohabitats were defined

within segments to be ‘‘distinctive, repeatable natural

and man-made physical features’’ (Berry and Young

2001). Those six macrohabitats were inside bend,

outside bend, channel crossover, tributary mouth,

connected secondary channel, and nonconnected sec-

ondary channel, as shown in Figure 2. The three

macrohabitats associated with bends (inside bend,

outside bend, and channel crossover) were placed in

the general category bend, resulting in a total of four
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different macrohabitats for statistical purposes. The

averaging of the three bend macrohabitats was

necessary because they were not selected independent-

ly (i.e., all three were sampled at each bend).

For each gear deployment, a simple collect-and-

count method was used for catching the fish, in which

the number of fish, the particular fish species, and the

size of area sampled (estimated by the width of the

gear and the distance covered as described in Berry et

al. 2005) were recorded. Each year, for each segment,

researchers could have used as many as four of the five

different gears chosen for this study to collect fish

within as many as five different randomly chosen

occurrences of each macrohabitat type (Table 1). Not

all gears were used in all macrohabitats because no

gear was considered effective at sampling them all. Of

these five gears, four (the benthic trawl, beach seine,

drifting trammel net, and electrofishing) are active

gears and one (the stationary gill net) is a passive gear.

Active gears are the gears that are nonstationary, in

that the gear is moved over the sampling area to collect

fish. Passive gears are stationary, in that they are

located within the sampling area for a specific amount

of time to collect fish. In our analysis, we consider

only the active gears owing to uncertainty about

transformation of sampled area for the passive gear

into a scale comparable to the active gears. Finally, not

only do the different gears cover different areas, but

each is designed differently, making each more prone

to catching different species and sizes of fish. All of

these factors combined affect the number of fish

caught in any particular sample by any particular gear.

The process of collecting and counting the fish was

FIGURE 1.—Missouri River Benthic Fishes Study area from Montana to its confluence with the Mississippi River in Missouri

(numbers within diamonds indicate least-altered segments, numbers within circles indicate inter-reservoir segments, and numbers

within pentagons indicate channelized segments).

FIGURE 2.—Schematic showing the macrohabitats sampled

during the Missouri River Benthic Fishes Study.
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repeated for 3 years from 1996 to 1998 (see Berry et al.

2005 for details).

The process of data collection included obtaining

multiple subsamples of fish with different gears within

each segment over randomly chosen macrohabitats.

The data used in this analysis and the analysis done by

Berry et al. (2005) were obtained after combining

subsample data in the mesohabitat (smaller-scale

habitat within a macrohabitat) and then the mesohabitat

level, resulting in data at the macrohabitat level. This

was necessitated by the varying numbers of subsamples

collected at the mesohabitat level within the macro-

habitat level. This was done so that each subsample had

an equal level of influence on the resulting means. The

resulting data contain 1,477 observations, of which a

large portion were zeros (see Figure 3). Owing to no or

very few nonzero observations, segments 7 and 12

were dropped for channel catfish, and electrofishing,

beach seine, and nonconnected secondary channel were

dropped for shovelnose sturgeon. This resulted in

1,278 observations for channel catfish and 657 for

shovelnose sturgeon. The resulting data included 58%
zeros for channel catfish and 61% zeros for shovelnose

sturgeon.

Modeling Approach

We consider two different types of zero values in the

data: structural zeros and sampling zeros. Structural

zeros are the zero values that correspond to species not

occurring at that particular site, and sampling zeros

correspond to sites where the species occurred but was

not detected (Royle 2006). Sampling zeros are

unavoidable in habitat analysis owing to the sensitivity

of observations to habitat conditions and gear detect-

ability issues. Sampling zeros can generate serious

implications in the analysis that can influence the

ability of accurate inference from the data (Moilanen

2002; MacKenzie et al. 2003); for example, the

recording of false absences can result in serious biases

TABLE 1.—Habitats and fish collection gears for Missouri River Benthic Fishes Study.

Habitat

Fish collection gear

Seinea Gill netb Electrofishingc Trawld Trammel nete

Nonconnected secondary channel X X X
Connected secondary channel

Shallow X
Deep X X X X

Channel crossover X X
Channel outside bend X X X
Channel inside bend

Channel border X X
Bars X
Pools X
Steep shoreline X

Tributary mouth
Small X X
Large X X X

a Beach seine was 10.7 m long and 1.8 m high with 5-mm mesh.
b Gill net was 30.5 m long and 1.8 m high (four 7.6-m-long panels of 19-, 38-, 51-, and 76-mm mesh).
c Boat electrofishing was conducted with 5,000-W generator and pulsed DC (two netters with 5-mm

mesh dip nets).
d Bottom trawl mouth was 2 m wide and 0.5 m high (net was 5.5 m long with inner net of 3.2-mm

mesh).
e Drifted trammel net was 22.9 m long and 1.8 m deep (25-mm-mesh inner wall and 2,203-mm-mesh

outer wall).

FIGURE 3.—Frequency of total fish count for channel catfish

and shovelnose sturgeon. The highest number of channel

catfish (212) was caught in a bend with a beach seine, and the

highest number of shovelnose sturgeon (40) was caught in a

bend with a drifting trammel net.
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in the model parameter estimates. Martin et al. (2005)

make recommendations on the choice of appropriate

modeling approaches to model the source of zeros. In

reality, often there exists a mixture of sampling zeros

and structural zeros that can be addressed employing a

zero-inflated model if we have information on the

detection probabilities. A hurdle model or a two-stage

modeling approach is common for modeling heavy-

zero data when structural zeros are believed to be the

only source of zeros (Lambert 1992; Greene 2003). In

general, a zero-inflated Poisson model can be used

when one is not certain about the nature of the source

of zeros.

In this problem, since the data are count data, we

consider a Poisson process to account for nonzero

observations. Moreover, we consider that the zero

inflation is due to both sampling zeros and structural

zeros and we consider gears, macrohabitats, and

segments as the covariates in estimation of the zero-

inflation probability. Gears are probably the primary

source of the sampling zeros, although the impact of

different gears on generation of sampling zeros might

be species specific. The efficiency of gears in detecting

species is a function of various habitat-specific factors;

in addition, certain gears are more efficient than others

for certain species. Macrohabitats and segments are

probably the main contributors to the structural zeros.

Although the sampling and structural zeros are

confounded and hard to separate without information

on detection probabilities of gears, it may be possible

to infer different probable causes for zeros based on a

combination of the ecological prior knowledge and the

results of the analysis. We consider a ZIP model that

allows us to model both sources of zeros simulta-

neously by using the indicator variables corresponding

to gears, macrohabitats, and segments as covariates for

modeling the zero-inflation probability.

ZIP model.—Let y
ijkl

be the fish count from segment

i, macrohabitat j, gear k, and year l. Then we can say

that y
ijkl

; 0 with probability p
ijk

and y
ijkl

;

Poisson(k
ijkl

a
ijkl

) with probability 1 � p
ijk

, where

k
ijkl

a
ijkl

is the Poisson intensity representing the mean

number of fish caught, k
ijkl

represents the mean catch

per unit area (CPUA), and a
ijkl

accounts for the

different areas (or level of effort) involved in each

separate measurement. Therefore, we can write this

model formally as

Pðyijkl ¼ 0Þ ¼ pijk þ ð1� pijkÞe�ðkijklaijklÞ ð1Þ

Pðyijkl ¼ xÞ ¼ ð1� pijkÞe�ðkijklaijklÞ½ðkijklaijklÞx=x!�: ð2Þ

The described ZIP model is a mixture distribution of

a point mass at 0 (i.e., excess zeros) and a Poisson

distribution. A nonzero fish count follows a Poisson

distribution with intensity k
ijkl

a
ijkl

. A zero fish count

could either be produced by a zero-generating process

(with zero-inflation probability p
ijk

) or follow a

Poisson distribution (with probability 1 � p
ijk

). Note

that the term (k
ijkl

a
ijkl

)x/x! in equation (1) is equal to 1,

since x ¼ 0.

Both k
ijkl

and p
ijk

can be modeled employing

canonical link functions (McCullagh and Nelder

1989):

logeðkijklÞ ¼ b0 þ x0
ijklb ð3Þ

logiteðpijkÞ ¼ c0 þ z0ijkc; ð4Þ

where b
0

and c
0

are random intercepts, b and c are

vectors of random effects, and x and z are vectors of

covariates of interest with elements representing

indicator variables corresponding to the variables gear,

segment, macrohabitat, and year. The logit function,

commonly used in generalized linear models, is

defined as follows (McCullagh and Nelder 1989):

logitðpijkÞ ¼ loge

pijk

1� pijk

� �
:

Note that the covariates in the model correspond to the

levels of several categorical variables, which makes

interpretation of the intercepts impractical. However,

the intercepts are considered random to help account

for uncertainties such as sampling errors and possible

categorical covariates that were excluded from the

analysis. The coefficients of the model corresponding

to a specific level of a categorical variable are

interpreted as the mean fish CPUA in that level

relative to the baseline level (the level of the category

set to zero). The choice of baseline level for a

categorical variable is arbitrary.

Lambert (1992) employs an expectation–maximiza-

tion (EM) algorithm (Hartley 1958; Dempster et al.

1977) to obtain the maximum likelihood estimates for

the ZIP parameters. Hall (2000) adapts Lambert’s

methodology to a ZIP model with random effects.

Maximum likelihood estimation is also possible by

using nonlinear mixed model estimation methods such

as PROC NLMIXED in SAS (e.g., see Littell et al.

2006). Other recently developed tools for zero-inflated

modeling of count data, which are available in statistical

software packages such as Stata (Stata Corporation

2003) and SAS (PROC COUNTREG), provide simple

implementation of such modeling approaches for the

user. Although the optimization techniques used by

most of these methods are some of the best available,

convergence problems are often detected for complex

models. Here, we consider a Bayesian implementation
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for a ZIP model with random effects (e.g., Wikle and

Anderson 2003; Martin et al. 2005). The Bayesian

implementation provides a more flexible and reliable

estimation tool. A Bayesian approach provides an easy

but concise way to deal with the different sources of

uncertainty involved in the problem discussed in this

paper. The advantage of the modeling option described

in this paper over other available options is easy

implementation of a sophisticated statistical model with

more valid and comprehensive inference.

Bayesian estimation and Markov chain–Monte
Carlo methods.—The Bayesian modeling framework

for zero-inflated models is a flexible modeling approach

that not only provides a tool for researchers to

simultaneously model data from multiple gears with a

high percentage of zeros but also enables them to include

scientific knowledge or beliefs in the model by assigning

prior probabilities to the unknown variables and using

data to update these beliefs (Wikle and Anderson 2003).

The coefficients in the model are random effects.

Furthermore, in the Bayesian framework, inferential

statements on model parameters (called credible inter-

vals) and P-values on hypotheses are more in line with

common sense interpretations (Congdon 2001).

In general, given a sampling distribution f(x j h),

where h is the unknown parameter of interest, and prior

probability p(h), Bayesian inference is based on the

posterior distribution p(h j x). Considering that the joint

distribution can be decomposed as

f ðx; hÞ ¼ f ðxjhÞpðhÞ:

Bayes’ rule can be applied to obtain the posterior

distribution,

f ðhjxÞ}f ðxjhÞpðhÞ;

where the integral of f(x, h) with respect to h is the

normalizing constant. The posterior distribution is

often very complex and the normalizing constant

integral cannot be analytically solved. Instead, one

can simulate from the posterior distribution and the

simulated values used in a Monte Carlo framework to

make inferences. Markov chain–Monte Carlo (MCMC)

methods are a popular approach to simulating from the

posterior distributions. The MCMC methods are a class

of algorithms for sampling from probability distribu-

tions based on construction of a Markov chain that has

the desired distribution as its stationary distribution

(Gelfand and Smith 1990) and includes such algo-

rithms as Metropolis–Hastings and the Gibbs sampler

(Casella and George 1992; Robert and Casella 2004).

Gibbs sampling is the main basis of the freely

distributed software WinBUGS (Lunn et al. 2000).

A key issue in implementing the Gibbs sampler (or

any other MCMC sampler) is that the number of

iterations of the algorithm should be large enough to

guarantee that the chain approaches stationarity (i.e.,

convergence to the target density). Typically, the first

1,000–5,000 iterations are considered the burn-in

period of the chain and are thrown out (Congdon

2001). The number of burn-in iterations required can

be influenced by the choice of starting value.

In this problem, we consider normal priors for the

random effects (including a random intercept), b
i

;

N(0, s�1) and c
i
; N(0, s�1), where s is the precision

(considered known in our case) for the normal density

(note that s ¼ [1/r2], where r2 is the variance of the

normal density). Choosing a very small value for the

precision (or very large variance) results in a ‘‘vague’’

or ‘‘noninformative’’ prior distribution, a common

choice in Bayesian modeling that allows data to guide

the analysis (Congdon 2001, 2005). We used 10�6 for

the value of s to have a noninformative prior (for

shovelnose sturgeon, 10�2 was used because of

convergence problems in WinBUGS). To sample from

the posterior densities, the Gibbs sampler in WinBUGS

is used with 50,000 iterations, with 10,000 iterations

considered as the burn-in period to guarantee conver-

gence (based on visual inspection of the MCMC chain)

to the target posterior distribution (i.e., chain achieves

stationarity). To guarantee convergence, three chains

are used with different starting values for 1 million

iterations and ‘‘thinned’’ using every 20th realization

(resulting in 50,000 realizations) and 10,000 iterations

as the burn-in period. The thinning procedure helps

reduce the autocorrelation between the iterations of the

MCMC chain, resulting in improved inference, and

also reduces the memory and storage requirements. The

WinBUGS code is shown in the appendix.

A visual investigation of the plot of the random

variables versus the number of iterations is a common

but informal method to check convergence. However,

in cases where visual assessment of the MCMC

samples is not sufficient to draw conclusions about

the convergence of the algorithm, formal tests of

convergence, such as the Geweke (Geweke 1992) and

Raftery–Lewis tests (Raftery and Lewis 1992), among

others, can be used. In our case, a visual assessment of

the MCMC samples and the autocorrelation plots of the

chains was sufficient to conclude that the algorithm has

converged.

We tested the robustness of the ZIP model to

excessive zero values by conducting a series of

simulations. The goal was to obtain an understanding

of the model’s limitation to provide reliable estimates

under high percentages of zero values. In the Bayesian

modeling context, we consider the failure to achieve

convergence for the MCMC chain as indicating the
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model’s inability to provide reliable estimates. The

simulation was conducted by randomly removing

nonzero values from available data on channel catfish

and shovelnose sturgeon and by fitting the model to

the data obtained by this procedure. We considered

four different scenarios for each species: 85, 90, 95,

and 99% zero values.

Note that since the independent variables in the

model are categorical variables, the parameters corre-

spond to the difference in mean responses for a certain

level of the categorical variable relative to the baseline

levels (the level of the category set to zero). The levels

considered arbitrarily as baseline levels are as follows:

segment 27 for segments, tributary mouth for macro-

habitats, 1998 for years, and beach seine (channel

catfish) and drifting trammel net (shovelnose sturgeon)

for gears. The definitions of the indicator variables

corresponding to the levels of the categorical variables

are arbitrary and, for example, the choice of baseline

categories does not affect the overall results of the

analysis. The obtained MCMC samples correspond to

realizations from the posterior density of the unknown

parameters rather than just a point estimate as obtained

in classic parametric methods (e.g., maximum likeli-

hood estimation). The nonoverlapping densities were

considered as indicating a significant difference among

the coefficients of the model. In a Bayesian setting,

when using noninformative prior densities, a 95%
credible interval for the estimates approximately

coincides with a 95% confidence interval for the

maximum likelihood estimates. If desired, we can use

point estimates (e.g., posterior mean, median, or mode)

derived from the posterior density.

Results

For channel catfish, the drifting trammel net

significantly (i.e., nonoverlapping 95% credible inter-

vals) increases the zero-inflation probability compared

with all other gears, including the baseline (beach

seine), meaning that the drifting trammel net is more

likely to correspond to excess zeros (Table 2);

electrofishing and the benthic trawl significantly

decrease the zero-inflation probability compared with

the beach seine. Bends and connected secondary

channels significantly decrease the zero-inflation

probability relative to tributary mouths (baseline) and

nonconnected secondary channels. Segments 3, 5, 8,

10, 14, 15, 17, and 19 significantly increase the zero-

inflation probability relative to all other segments,

including the baseline (segment 27).

The results from the Poisson mean model for

channel catfish (Table 2) indicate that the mean CPUA

of electrofishing is lower than that of the beach seine

and benthic trawl; the drifting trammel net has the

lowest mean CPUA (Figure 4). The mean CPUA of

1997 is significantly lower than the mean CPUA of

1998 (Figure 5). Nonconnected secondary channels

have the lowest mean CPUA; the mean CPUA of

connected secondary channels is significantly lower

than that of the baseline (tributary mouths; Figure 6).

For segments, mean CPUA in segment 27 is

significantly higher than that in all other segments

(except for segments 3, 22, and 23; Figure 7; Table 2).

The mean CPUA for segments 22, 23, and 27 is

significantly higher than that of all other segments,

except segment 3.

For the shovelnose sturgeon, the effect of the

benthic trawl and drifting trammel net on the zero-

inflation probability is not significantly different

(Table 3). Bends and connected secondary channels

significantly decrease the zero-inflation probability

relative to tributary mouths. Segments 8, 9, and 23 are

the only segments in which the zero-inflation proba-

bility is significantly lower than in segment 27.

The results from the Poisson mean model for the

shovelnose sturgeon (Table 3) indicate that mean

CPUA is significantly higher for the benthic trawl than

for the drifting trammel net (Figure 8). The mean

CPUA of 1997 is significantly lower than that of 1998

(Figure 9). The mean CPUAs of bends and connected

secondary channels are significantly lower than that of

the tributary mouth (Figure 10). The mean CPUA of

shovelnose sturgeon in segment 27 is significantly

higher than that in segment 8 (Figure 11). The mean

CPUAs for segment 8 are significantly lower than the

CPUAs for segments 9, 12, 19, 22, 23, 25, and 27

(baseline).

The simulations conducted to test the robustness of

the model to zero values indicated convergence

problems for both channel catfish and shovelnose

sturgeon when the data contained very high percent-

ages of zeros. Convergence problems for channel

catfish simulations were apparent only for the case

with 99% zero values. However, for shovelnose

sturgeon with 90% zero values or higher, the model

showed severe lack of convergence and was unable to

provide useful inference.

Discussion

The model discussed in this paper allows us to

conduct analysis on fisheries data that is impossible or

hard to analyze with classic methods such as ANOVA

and regression. The approach we present allows the

researcher to assess fish population abundance patterns

in space and time without disregarding important

issues, such as the effect of gear efficiency and

detection probability on the presence of sampling and
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structural zeros. Additionally, this approach allows for

comparison of gear performance among fish species.

The Bayesian approach employed in fitting the ZIP

model provides more powerful and comprehensive

inference by allowing the use of random effects and a

random intercept in the model owing to uncertainties in

the data collection procedures (e.g., uncertainty about

optimal sampling design, measurement, and sampling

errors) and lack of confidence about the involvement of

appropriate covariates (e.g., other physical and ecolog-

ical variables for which data are not available), in

addition to its ability to use prior knowledge about

TABLE 2.—Results for the posterior densities of the model coefficients for the Poisson and zero-inflated Poisson models for

channel catfish. The results shown are the mean, SD, median, and lower and upper bounds for the 95% credible interval for the

posterior densities of the model random effects. The levels of the categorical variables set to zero to define dummy variables are:

tributary mouth (macrohabitat), segment 27 (segment), 1998 (year), and beach seine (gear).

Coefficient Mean SD
Lower
bound Median

Upper
bound

Poisson

Intercept �0.6873 0.08326 �0.8503 �0.6869 �0.5254
Gear

Benthic trawl �4.249 0.04377 �4.334 �4.249 �4.163
Trammel net �7.66 0.08793 �7.835 �7.66 �7.49
Electrofishing �4.877 0.04656 �4.969 �4.877 �4.787

Year
1996 �0.1159 0.04553 �0.2059 �0.1157 �0.02714
1997 �0.2091 0.03524 �0.278 �0.2091 �0.14

Habitat
Bend �0.034 0.06699 �0.1641 �0.03439 0.09819
Connected secondary

channel �0.2068 0.07785 �0.359 �0.2072 �0.05426
Nonconnected secondary

channel �0.7207 0.1161 �0.9509 �0.72 �0.4953
Segment

3 �0.3459 0.143 �0.6343 �0.3428 �0.07388
5 �0.5104 0.09311 �0.6953 �0.5095 �0.3304
8 �1.881 0.3234 �2.572 �1.86 �1.306
9 �0.7694 0.06703 �0.9018 �0.7691 �0.6389
10 �1.042 0.1286 �1.301 �1.04 �0.7969
14 �0.8074 0.1695 �1.152 �0.8033 �0.4865
15 �0.9855 0.09139 �1.167 �0.9845 �0.809
17 �0.4764 0.06325 �0.6004 �0.4765 �0.3524
19 �0.2696 0.07782 �0.4234 �0.2692 �0.1179
22 0.3558 0.05713 0.2439 0.3558 0.4679
23 0.1732 0.05581 0.06401 0.173 0.2828
25 �0.1446 0.05816 �0.2588 �0.1446 �0.03072

Zero-inflated Poisson

Intercept 0.3017 0.3373 �0.3612 0.3019 0.9607
Gear

Benthic trawl �0.7021 0.2003 �1.096 �0.7014 �0.3117
Trammel net 0.621 0.2208 0.1898 0.6207 1.055
Electrofishing �1.067 0.205 �1.472 �1.066 �0.6676

Habitat
Bend �0.928 0.2396 �1.401 �0.9266 �0.4604
Connected secondary

channel �0.6422 0.2663 �1.166 �0.6409 �0.122
Nonconnected secondary

channel �0.5076 0.3897 �1.281 �0.5041 0.2473
Segment

3 2.307 0.4165 1.516 2.299 3.149
5 1.664 0.3141 1.053 1.662 2.287
8 3.334 0.4848 2.418 3.321 4.326
9 0.4385 0.2945 �0.139 0.4388 1.015
10 1.521 0.3433 0.8526 1.52 2.2
14 1.964 0.3543 1.281 1.961 2.669
15 0.8561 0.3123 0.2448 0.8564 1.469
17 1.111 0.3332 0.4622 1.109 1.768
19 1.03 0.3362 0.3713 1.03 1.69
22 0.122 0.3284 �0.5248 0.1224 0.7635
23 0.0871 0.3069 �0.5157 0.08743 0.6863
25 0.4331 0.2851 �0.1266 0.4325 0.9916
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FIGURE 4.—Box plots for the posterior distributions of the

coefficients corresponding to the difference in the mean catch

per unit area (CPUA) of channel catfish between the beach

seine (the baseline gear [set to zero]) and three other gears—

the benthic trawl (BT), drifting trammel net (DTN), and

electrofishing (EF). Boxplot horizontal lines: lower line ¼
lower quartile (25th percentile), middle line ¼ median (50th

percentile), upper line ¼ upper quartile (75th percentile).

Boxplot whiskers: lower whisker ¼ smallest observation,

upper whisker ¼ largest observation. The box dimensions

correspond to the spread (and possible skewness) of the data.

FIGURE 5.—Box plots for the posterior distributions of the

coefficients corresponding to the difference in the mean catch

per unit area (CPUA) of channel catfish between 1998 (the

baseline year [set to zero]) and the years 1996 and 1997.

Boxplot horizontal lines: lower line ¼ lower quartile (25th

percentile), middle line¼median (50th percentile), upper line

¼ upper quartile (75th percentile). Boxplot whiskers: lower

whisker ¼ smallest observation, upper whisker ¼ largest

observation. The box dimensions correspond to the spread

(and possible skewness) of the data.

FIGURE 6.—Box plots for the posterior distributions of the

coefficients corresponding to the difference in the mean catch

per unit area (CPUA) of channel catfish between tributary

mouths (the baseline macrohabitat [set to zero]) and three

other macrohabitats—bends (BEND), nonconnected second-

ary channels (SCN), and connected secondary channels

(SCC). Boxplot horizontal lines: lower line ¼ lower quartile

(25th percentile), middle line ¼ median (50th percentile),

upper line ¼ upper quartile (75th percentile). Boxplot

whiskers: lower whisker ¼ smallest observation, upper

whisker¼ largest observation. The box dimensions correspond

to the spread (and possible skewness) of the data.

FIGURE 7.—Box plots for the posterior distributions of the

coefficients corresponding to the mean catch per unit area

(CPUA) of channel catfish between the baseline segment

(segment 27) and other segments; segments 3, 5, and 9 are in

the least-altered zone, segments 7, 8, 10, 12, 14, and 15 in the

inter-reservoir zone, and segments 17, 19, 22, 23, 25, and 27

in the channelized zone. Boxplot horizontal lines: lower line¼
lower quartile (25th percentile), middle line ¼ median (50th

percentile), upper line ¼ upper quartile (75th percentile).

Boxplot whiskers: lower whisker ¼ smallest observation,

upper whisker ¼ largest observation. The box dimensions

correspond to the spread (and possible skewness) of the data.
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model parameters (e.g., gear efficiency, species-

preferred macrohabitats, previously observed popula-

tion numbers, results from previous studies, and the

opinions of other experts). This approach has a very

easy and straightforward implementation. Also, this

procedure allows us to conduct multiple comparisons

to obtain information on gear performance.

Comparing the results obtained by our Bayesian

approach for fitting the ZIP model with those from the

analyses conducted by Berry et al. (2005), the

applicability of our approach in addressing ecological

questions is clear. Using this approach, we were able to

combine data collected by multiple gears and analyze

aggregated data, which the classic statistical methods

used by Berry et al. (2005) could not accomplish.

Many of our general results from the ZIP model agree

with the conclusions of Berry et al. (2005) while

providing a more complete, robust analysis (see below;

also see Tables 4, 5). This analysis incorporates data

from most active gears, years, segments, and macro-

habitats and extends comparisons to most levels

originally intended by Berry et al. (2005) that were

TABLE 3.—Results for the posterior densities of the model coefficients for the Poisson and zero-inflated Poisson models for

shovelnose sturgeon. The results shown are the mean, SD, median, and lower and upper bounds for the 95% credible interval for

the posterior densities of the model random effects. The levels of the categorical variables set to zero to define dummy variables

are tributary mouth (macrohabitat), segment 27 (segment), 1998 (year), and drifting trammel net (gear).

Coefficient Mean SD Lower bound Median Upper bound

Poisson

Intercept �7.779 0.3281 �8.46 �7.768 �7.169
Benthic trawl 0.8286 0.1675 0.4498 0.8435 1.118
Year

1996 �0.0796 0.09467 �0.2661 �0.0791 0.1044
1997 �0.2264 0.07631 �0.3771 �0.2261 �0.0774

Habitat
Bend �1.066 0.2152 �1.474 �1.072 �0.6308
Connected secondary

channel �0.7235 0.2272 �1.156 �0.7271 �0.2667
Segment

3 �0.1597 0.3206 �0.7735 �0.1652 0.4867
5 0.3536 0.2702 �0.1426 0.3415 0.9183
7 �0.1016 0.2756 �0.6076 �0.1137 0.4741
8 �1.192 0.3266 �1.807 �1.2 �0.5269
9 0.6444 0.261 0.1701 0.6314 1.196
10 0.2735 0.2933 �0.2749 0.2651 0.8778
12 1.02 0.2955 0.4656 1.011 1.632
14 �1.129 0.4877 �2.095 �1.117 �0.2074
15 0.1701 0.2967 �0.3889 0.161 0.7771
17 �0.8584 0.4633 �1.728 �0.8712 0.0671
19 0.3978 0.4261 �0.4876 0.4132 1.189
22 0.7975 0.2695 0.3045 0.785 1.364
23 0.7946 0.2644 0.3107 0.782 1.354
25 0.4568 0.3197 �0.1572 0.4507 1.101

Zero-inflated Poisson

Intercept 1.789 0.6674 0.4705 1.79 3.101
Benthic trawl 0.5424 0.4469 �0.5251 0.6014 1.224
Habitat

Bend �1.878 0.542 �2.982 �1.864 �0.8538
Connected secondary

channel �1.488 0.5958 �2.696 �1.475 �0.3515
Segment

3 0.179 0.7078 �1.196 0.1744 1.593
5 �1.209 0.6524 �2.544 �1.19 0.01841
7 �0.7136 0.6119 �1.936 �0.708 0.4754
8 �2.443 1.765 �6.908 �1.998 �0.1228
9 �1.949 1.048 �4.797 �1.786 �0.5021
10 �1.329 0.7375 �2.87 �1.297 0.01742
12 1.2 0.6431 �0.01349 1.18 2.517
14 �0.6153 1.509 �4.826 �0.2802 1.324
15 �0.3749 0.6062 �1.561 �0.3761 0.8098
17 �1.888 1.899 �6.609 �1.43 0.6814
19 0.594 0.7105 �0.7267 0.5973 1.929
22 �1.133 0.6049 �2.302 �1.14 0.08346
23 �1.412 0.5752 �2.535 �1.415 �0.2682
25 0.0283 0.5636 �1.044 0.01475 1.18
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FIGURE 8.—Box plot for the posterior distribution of the

coefficients corresponding to the difference in the mean catch

per unit area (CPUA) of shovelnose sturgeon between the

drifting trammel net (the baseline gear [set to zero]) and the

benthic trawl (BT). Boxplot horizontal lines: lower line ¼
lower quartile (25th percentile), middle line ¼ median (50th

percentile), upper line ¼ upper quartile (75th percentile).

Boxplot whiskers: lower whisker ¼ smallest observation,

upper whisker ¼ largest observation. The box dimensions

correspond to the spread (and possible skewness) of the data.

FIGURE 9.—Box plots for the posterior distributions of the

coefficients corresponding to the difference in the mean catch

per unit area (CPUA) of shovelnose sturgeon between 1998

(the baseline year [set to zero]) and the years 1996 and 1997.

Boxplot horizontal lines: lower line ¼ lower quartile (25th

percentile), middle line¼median (50th percentile), upper line

¼ upper quartile (75th percentile). Boxplot whiskers: lower

whisker ¼ smallest observation, upper whisker ¼ largest

observation. The box dimensions correspond to the spread

(and possible skewness) of the data.

FIGURE 10.—Box plots for the posterior distributions of the

coefficients corresponding to the difference in the mean catch

per unit area (CPUA) of shovelnose sturgeon between

tributary mouths (the baseline macrohabitat [set to zero])

and bends (BEND) and connected secondary channels (SCC).

Boxplot horizontal lines: lower line ¼ lower quartile (25th

percentile), middle line¼median (50th percentile), upper line

¼ upper quartile (75th percentile). Boxplot whiskers: lower

whisker ¼ smallest observation, upper whisker ¼ largest

observation. The box dimensions correspond to the spread

(and possible skewness) of the data.

FIGURE 11.—Box plots for the posterior distributions of the

coefficients corresponding to the difference in mean catch per

unit area (CPUA) of shovelnose sturgeon between the baseline

segment (segment 27) and other segments; segments 3, 5, and

9 are in the least-altered zone, segments 7, 8, 10, 12, 14, and

15 in the inter-reservoir zone, and segments 17, 19, 22, 23, 25,

and 27 in the channelized zone. Boxplot horizontal lines:

lower line ¼ lower quartile (25th percentile), middle line ¼
median (50th percentile), upper line ¼ upper quartile (75th

percentile). Boxplot whiskers: lower whisker ¼ smallest

observation, upper whisker ¼ largest observation. The box

dimensions correspond to the spread (and possible skewness)

of the data.
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not possible, partly because of the presence of many

zeros (this was especially true for shovelnose stur-

geon).

The difference between the robustness of the model

for data on these two different species, indicated by the

simulation studies, is probably related to the spatial

distribution of the nonzero values. Notice that because

the channel catfish is a habitat generalist, nonzero

values are available for this species through the spatial

extent of the data; however, because the shovelnose

sturgeon is more of a habitat specialist, it is not as

uniformly distributed spatially.

Before we discuss results of our model, it must be

noted that presentation of biologically meaningful

interpretations of the coefficients in the zero-inflation

part of the model is difficult without having informa-

tion to separate the sampling and structural zeros. Note

that the zero-inflation probability is mainly a latent

process that, although being important for the mech-

anism of the model, lacks meaningful interpretability.

There have been previous attempts to simplify such

interpretations (e.g., Lam et al. 2006), but we believe

such approaches are appropriate only when useful

information is available on detection probability and

gear efficiency (also see Martin et al. 2005). Note that

the effects of covariates on the zero-inflation probabil-

ity are related to sufficiency or insufficiency (i.e., lack

of fit) of the Poisson model to fit the data.

General Channel Catfish Patterns

Our results employing a Bayesian approach to fitting

a ZIP model for channel catfish generally support the

results presented by Berry et al. (2005) while extending

them to include comparisons that they were unable to

make because of statistical test limitations (see Table

4). Our results agree with Berry et al.’s analysis of

catch per unit effort (CPUE), in that beach seine,

benthic trawl, and electrofishing seem to perform best

for the channel catfish with mean CPUA lower for

drifting trammel net. Berry et al. (2005) indicate that

56% of total channel catfish catch was collected by

electrofishing and beach seine combined but that

channel catfish were caught in good numbers in all

gear except drifting trammel net. Our results show that

the mean CPUA of shovelnose sturgeon was highest in

1998, significantly decreased in 1997, and slightly

TABLE 4.—Comparison of results from the zero-inflated Poisson (ZIP) model with a previous analysis of the data by Berry et al.

(2005) for channel catfish. Abbreviations are as follows: CPUA¼ catch per unit area, TRM¼ tributary mouth, SCC¼ connected

secondary channel, CH¼ channelized, IR¼ inter-reservoir, LA¼ least-altered, SCN¼ nonconnected secondary channel.

Variable ANOVA (Berry et al. 2005) Bayesian ZIP

Year No significant differences for any of year contrasts for data
collected with beach seines and benthic trawls. Significant
difference for electrofishing data but no trend.

Significant differences (1998 . 1997 based on
highest-to-lowest mean CPUA).

Macrohabitat Substantially more channel catfish in inside bends (a
subsection of ‘‘Bend’’), TRM, and SCC in CH zone.

General agreement with Berry et al. (2005) but
extends their results to all segments (Bend .

SCN; TRM . SCC . SCN based on
highest-to-lowest mean CPUA).

River segment
and zone

CH segments have higher mean CPUA than most IR segments.
Excluded LA segments 3, 5, 7, 8, 10, 12, and 14.

CH segments have higher mean CPUA than most
IR segments. Most LA segments have higher
mean CPUA than IR segments.

Gear Benthic trawl and electrofishing perform best. All gears can be ranked (highest to lowest) based
on mean CPUA as follows: beach seine .

benthic trawl . electrofishing . drifting
trammel net.

TABLE 5.—Comparison of results from the zero-inflated Poisson (ZIP) model with a previous analysis of the data by Berry et

al. (2005) for shovelnose sturgeon. Abbreviations are defined in Table 4.

Variable ANOVA (Berry et al. 2005) Bayesian ZIP

Year Significant differences between 1996 and 1997 for data collected
with benthic trawl. Significant differences between 1997 and
1998 for data collected with drifting trammel net (no trend).

Significant difference between 1997 and 1998;
1998 had a higher mean CPUA for all gears.

Macrohabitat Only able to compare ‘‘Bend’’ and SCC (no significant difference
detected).

Significant differences for the following: TRM .

Bend and SCC (BEND and SCC not
significantly different).

River segment
and zone

Some IR segments have significantly lower mean CPUA than most
CH or LA segments. Included only three CH segments.

Some IR segments have significantly lower mean
CPUA than most CH or LA segments. Included
all CH segments.

Gear Drifting trammel net is the only gear with significantly high catch
per unit effort.

Benthic trawl performs significantly better than
drifting trammel net.
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decreased in 1996. Berry et al. (2005) found no

significant differences for these contrasts when using

beach seines and benthic trawls and significant

differences when using electrofishing, but they gave

no trends. Berry et al. (2005) concluded that there were

substantially more channel catfish in inside bend (a

component of bend), tributary mouth, and connected

secondary channel macrohabitats than in nonconnected

secondary channel macrohabitats in the channelized

zone. Our model results extend theirs and show a

higher CPUA in connected secondary channels,

tributary mouths, and bends for all segments of the

river. As did Berry et al. (2005) for CPUE, from our

results we conclude that for channel catfish the CPUA

for inter-reservoir segments is significantly lower than

for channelized zone segments. In addition, we were

able to make channel catfish comparisons with least-

altered segments that Berry et al. (2005) were unable to

make because they excluded segments 3, 5, 7, 8, 10,

12, and 14 owing to lack of nonzero observations. In

our analysis, only segments 7 and 12 were excluded

owing to no or few nonzero observations.

General Shovelnose Sturgeon Patterns

For shovelnose sturgeon, Berry et al. (2005) note

that many planned contrasts were not possible owing

to low total catch. Based on their results, 64% of

shovelnose sturgeon were caught by drifting trammel

net, the only gear that indicated significant differences.

Table 5 provides a summary of comparison of our

results to the results provided in Berry et al. (2005).

Our results show that benthic trawl performs slightly

better than drifting trammel net in collecting shovel-

nose sturgeon. Our results show significantly higher

mean CPUA for 1998 compared with 1997. Berry et

al. (2005) found significant differences between 1996

and 1997 for benthic trawls and drifting trammel nets

and between 1997 and 1998 for drifting trammel nets,

but they give no trends. Shovelnose sturgeon were

caught in all macrohabitats except nonconnected

secondary channels (Berry et al. 2005), which explains

why nonconnected secondary channels were excluded

from our analysis. Our results show significantly lower

mean CPUAs for bends and connected secondary

channels than for the baseline (tributary mouths). Berry

et al. (2005) could only compare bends to connected

secondary channels for the active gears and found no

significant differences, while they did show a signif-

icantly higher mean CPUE for stationary gill net (the

passive gear excluded from our analyses) for bend

compared to tributary mouth. Just as Berry et al.

(2005) conclude, our results show that shovelnose

sturgeon mean CPUA in some inter-reservoir zone

segments is significantly lower than in the channelized

zone segments or least-altered zone segments; the

Berry et al. (2005) analysis includes only three

channelized zone segments.

Implications

The Bayesian zero-inflated model not only provides

a tool for modeling zero-heavy data using random

effects but also allows for paired comparisons among

main effects. This feature transforms the present model

into a versatile tool for scientists to use in addressing

design issues, such as optimal gear selection, and also

provides species-specific information on changes of

fish abundance in space and time that are essential for

monitoring programs.

A useful characteristic of a Bayesian approach to

modeling abundance data with excess zeros is that it

provides a framework in which to account for prior

information wherever possible. Unfortunately, in our

analysis we lacked reliable knowledge that could be

incorporated into the model as prior information.

However, we believe that access to a modeling

framework (such as the one presented in this paper)

that allows for the inclusion of prior information might

motivate fisheries biologists to conduct experiments to

obtain such information (such as estimates of gear

performance).

Comparisons between standard models for count

data (e.g., Poisson, negative binomial) and their zero-

inflated versions (ZIP, ZINB) show that for heavy-zero

data, the zero-inflated models are a more natural and

powerful modeling choice. The reader is referred to

Martin et al. (2005) for more details and a formal

discussion.

The present model enables the researcher to

combine data obtained from different macrohabitats,

gears, segments, and years and conduct a single

analysis to make useful conclusions for each species.

This model can be extended and generalized to cases

with multiple species and different layers of spatial and

temporal data, such as covariates corresponding to the

physical characteristics of different macrohabitats, by

including spatial or temporal random effects (Wikle

and Anderson 2003).

One important caution to note when using the

present model is that it lets us make inferences about

combinations of segments, macrohabitats, gears, and

years that did not occur (e.g., gears not fishable in

certain macrohabitats). In general, this type of

inference is not reliable because of lack of data and

thus requires extrapolation. However, since the present

model includes a random intercept and random effects

that account for the uncertainties regarding data

collection and inclusion of appropriate covariates, the

extrapolation results are more reliable than the classic
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cases (models with fixed effect only) where such

uncertainties are not accounted for.

Finally, another important advantage of the present

modeling approach for fisheries biology studies is the

ability to reliably infer patterns of relative abundance

based on data obtained by multiple gears without using

gear efficiencies, which stems from the fact that the

zero-inflation probability inference considered in the

model adjusts for habitat and species-related differenc-

es in performance of gears.
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Appendix: WinBUGS code for ZIP model

model f for (i in 1:n) f

tfshcnt[i] ; dpois(mu[i])

mu[i],-lambda[i,T[i]]*tarea[i]

# Log-linear model Poisson means

lambda[i,1] ,- 0

log(lambda[i,2]) ,-

b[1]þb[2]*bend[i]þb[3]*scc[i]þb[4]*scn[i]þb[5]*seg3[i]þb[6]*seg5[i]þb[7]*seg7[i]þb[8]*seg8[i]þb[9]*s

eg9[i]þb[10]*seg10[i]þb[11]*seg12[i]þb[12]*seg14[i]þb[13]*seg15[i]þb[14]*seg17[i]þb[15]*seg19[i]

þb[16]*seg22[i]þb[17]*seg23[i]þb[18]*seg25[i]þb[19]*y96[i]þb[20]*y97[i]þb[21]*bt[i]þb[22]*dtn[i]þb[

23]*ef[i]

# Logistic regression for the zero-inflation probability

logit(P[i,1]) ,-

a[1]þa[2]*bend[i]þa[3]*scc[i]þa[4]*scn[i]þa[5]*seg3[i]þa[6]*seg5[i]þa[7]*seg7[i]þa[8]*seg8[i]þa[9]*s

eg9[i]þa[10]*seg10[i]þa[11]*seg12[i]þa[12]*seg14[i]þa[13]*seg15[i]þa[14]*seg17[i]þa[15]*seg19[i]

þa[16]*seg22[i]þa[17]*seg23[i]þa[18]*seg25[i]þa[19]*bt[i]þa[20]*dtn[i]þa[21]*ef[i]

P[i,2] ,- 1-P[i,1]

T[i] ; dcat(P[i,1:2]);

# Flat Priors on parameters

for (j in 1:21) fa[j] ; dnorm(0,1.0E-6)g

for (j in 1:23) fb[j] ; dnorm(0,1.0E-6)g

g
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